You are here

DIŞARIDAN YALITIMLI BİNALARIN ARA KAT DÖŞEMELERİNİN ISIL DAVRANIŞININ DENEYSEL OLARAK İNCELENMESİ

Experimental Investigation of the Thermal Behavior of the Mezzanine Slabs of Externally Insulated Buildings

Journal Name:

Publication Year:

Abstract (2. Language): 
Change of exterior environment temperatures show deviation substantially from periodic regime in temperate climate conditions. Under these conditions behavior of construction element is expected to be different from results acquired from experiments made under controlled environments. In this study, thermal behavior of mezzanine floor beam slab of buildings in temperate climate condition, has been reviewed. For this purpose, measuring values which have been realized over buildings in usage, under real conditions, have been taken as a basis. Thermal behaviors of section (mezzanine floor coverings) EPS mixed concrete block wall with outer insulation + beam, have been appraised in 2 steps. These steps are general behaviors in whole measurement time which lasted about one month and change of minimum maximum and average temperature measured in environment and surfaces.
Abstract (Original Language): 
Ilıman iklim şartlarında dış ortam sıcaklıklarının değişimi, periyodik rejimden önemli miktarda sapma gösterir. Bu şartlarda yapı elemanının davranışının, kontrollü ortamlarda gerçekleştirilen deneylerden elde edilen sonuçlardan farklı olması beklenir. Bu çalışmada ılıman iklim şartlarındaki dışarıdan yalıtımlı binaların ara kat kirişli döşemelerinin ısıl davranışı araştırılmıştır. Bu amaçla kullanım halindeki binalar üzerinde gerçekleştirilen gerçek şartlar altındaki ölçüm değerleri esas alınmıştır. Dışarıdan yalıtımlı EPS katkılı beton blok duvar+ kiriş’den oluşan duvar kesitinin (ara kat döşemelerinin) ısıl davranışı, 2 adımda kapsamlı şekilde incelenmiştir. Bu adımlar; yaklaşık bir ay süren tüm ölçüm süresi içindeki genel davranışlar ve ortam ve yüzeylerde ölçülen minimum, ortalama ve maksimum sıcaklıkların değişimidir.
65-72

REFERENCES

References: 

1. Al-Temeemi, A. A., Harris, D. J. (2003) The effect of earth-contact on heat transfer through a wall in Kuwait,
Energy and Buildings, sayı: 35, 399-4042. Anon ISO 10211-2 (2001): Thermal bridges in building construction – heat flows and surface temperatures –
Part 2: Linear thermal bridges, the international organization for standardization, Geneva.
3. Anon, EN ISO 13370 (1998): Thermal performance of buildings – Heat transfer via the ground – calculation
methods –European Committe for Standardization, Brussels.
4. Anon, ISO 6946/2 (1986): Thermal insulation – Calculation methods – Part 2: Thermal bridges of rectangular
sections in plane structures –International Organisation for Standards, Geneva.
5. Anon, TS EN ISO 10211-1 (2000): Bina inşaatlarında ısıl köprüler – ısı akışları ve yüzey sıcaklıkları – Bölüm
1: Genel hesaplama metotları –/ Thermal bridges in building construction – heat flows and surface temperatures
– Part 1: General calculation methods, Türk Standartları Enstitüsü, Ankara.
6. Childs, K. W. (1988) Analysis of seven thermal bridges identified in a commercial building, American society
of heating, refrigerating and air-conditioning engineers (ASHRAE). Annual meeting, Ottawa ,
INCONNU, sayı: 94, 1776-1792
7. Coldicutt, S., Williamson, T. J., Penny, R. E. C. (1991) Attitudes and compromises affecting design for thermal
performance of housing in Australia, Environment International, sayı: 17(4), 251-261
8. Csoknyai, T. (2001) Surface Temperature a Thermal Bridges, Journal of Thermal Envelope and Building
Science, sayı: 25(1), 67-81
9. Deque, F. Ollivier, F. Roux, J. J. (2001) Effect of 2D modelling of thermal bridges on the energy performance
of buildings Numerical application on the Matisse apartment, Energy and Buildings, sayı: 33(6), 583-
587
10. Dilmac, Ş. Güner, A. Can, A. Kaygusuzoğlu G., Cihan, M. T. Şenkal Sezer F., Kartal, S. Ö. Kalpak (2005)
Döşemelerde Yanal Isı kayıplarının Hesaplanması İçin Parametrelerin Belirlenmesi, Türkiye Bilimsel ve
Teknik Araştırma Kurumu, İnşaat ve Çevre Teknolojileri Araştırma Grubu , Construction and Environmental
Technologies Research Grant Committee, Proje No: İÇTAG – 1242, TÜBİTAK, 1-79
11. Hassid, S. (1990) Thermal bridges across multilayer walls: An integral approach, Building and Environment,
sayı: 25(2), 143-150
12. Hassid, S. (1989) Thermal bridges in homogeneous walls: A simplified approach, Building and Environment,
sayı: 24(3), 259-264
13. Hens, H., Janssens, A., Depraetere, W., Carmeliet, J. Lecompte, J. (2007) Brick cavity walls: a performance
analysis based on measurements and simulations, Journal of Building Physics, sayı: 31(2), 95-124.
14. Höglund, T. Burstrand, H. (1998) Slotted steel studs to reduce thermal bridges in insulated walls, Thin-
Walled Structures, sayı: 32, 81–109
15. Larbi, A. B. (2005) Statistical modelling of heat transfer for thermal bridges of buildings, Energy and Buildings,
sayı: 37, 945-951
16. Mao, G., Johannesson, G. (1997) Dynamic calculation of thermal bridges, Energy and Buildings, sayı: 26,
233-240
17. Matrosov, Y. A., Butovsky, I. N., Childs, K. V., (1990) Results of comparing solutions of calculation problems
of enclosing structures with thermal bridges by Soviet and American methods, Energy and Buildings,
sayı: 14(4), 303-311
18. Salgon, Neveu J. J. A. (1987) Application of modal analysis to modelling of thermal bridges in buildings,
Energy and Buildings, sayı: 10(2), 109-120
19. Schwab, H., Stark, C., Wachtel, J., Ebert, H. P., Fricke, J. (2005), Thermal Bridges in Vacuum-insulated
Building Facades, Journal of Thermal Envelope and Building Science, sayı: 28(4), 345-355
20. Van Schijndel, A. W. M. (2003) Modeling and solving building physics problems with FemLab, Building
and Environment, sayı: 38, 319-327
21. Vavilov, V., Kauppinen, T., Grinzato, E. (1997) Thermal characterization of defects in building envelopes
using long square pulse and slow thermal wave techniques, Research in nondestructive evaluation
ISSN 0934-9847, sayı: 9(4), 181-200

Thank you for copying data from http://www.arastirmax.com