You are here

MEKANĠK AKTĠVE EDĠLMĠġ KROMĠTĠN GRAFĠTLE KARBOTERMAL REDÜKSĠYON KĠNETĠĞĠ

CARBOTHERMAL REDUCTION KINETICS OF MECHANICALLY ACTIVATED CHROMITE WITH GRAPHITE

Journal Name:

Publication Year:

Abstract (2. Language): 
The carbothermal reduction kinetics of mechanically activated chromite with graphite under an argon atmosphere was investigated at temperatures between 1100 and 1400°C. Zhuravlev-Lesokhin-Tempelman (ZLT) method was used in the reduction kinetics for non-activated chromite and the activation energy was calculated as 401,7 kJ/mol. Solid-state diffusion method was used in the reduction kinetics for 60 min-activated chromite and the activation energy was calculated as 283,3 kJ/mol. This decrease in activation energy was due to structural disordering in chromite structure by mechanical activation.
Abstract (Original Language): 
Mekanik aktive edilmiĢ kromitin argon atmosferi altında grafitle karbotermal redüksiyon kinetiği 1100 – 1400°C sıcaklık aralığında incelenmiĢtir. Aktive edilmemiĢ kromitin redüksiyon kinetiğinde Zhuravlev-Lesokhin-Tempelman (ZLT) metodu kullanılmıĢ ve aktivasyon enerjisi 401,7 kJ/mol olarak hesaplanmıĢtır. 60 dakika aktive edilmiĢ kromitin redüksiyon kinetiğinde katı hal difüzyon metodu kullanılmıĢ ve aktivasyon enerjisi 283,3 kJ/mol olarak hesaplanmıĢtır. Aktivasyon enerjisindeki bu düĢüĢ, mekanik aktivasyonla kromit yapısındaki yapısal düzensizliklerle sağlanmıĢtır.
17 - 22

REFERENCES

References: 

[1] H.M. Mikami, Industrial Minerals and Rocks, fifth ed., Vol.1, AIME, New York, 1983.
[2] K.K. Chatterjee, Uses of Metals and Metallic Minerals, New Age Int. Ltd Pub., New Delhi, 2007.
[3] G. Yarkadaş, K. Yildiz, Effects of mechanical activation on the soda roasting of chromite, Can. Metal. Quarterly 48(1), 69-72, 2009.
[4] E. Tahtakıran, Kromit, Ferrokrom ve Paslanmaz Çelik Sektörlerine Genel Bir Bakış, Madencilik Bülteni, 81, 44-47, 2007.
[5] Y.Z. Kayır, Türkiye’de ve Dünyada Paslanmaz Çelik, Metalurji Dergisi, Sayı 146, 2007.
[6] P. Weber, R.H. Eric, The reduction of chromite in the presence of silica flux, Minerals Eng. 19, 318-324, 2006.
[7] Y.L. Ding, N.A. Warner, Catalytic reduction of carbon-chromite composite pellets by lime, Thermochimica Acta 292, 85-94, 1997.
[8] A. Atasoy, Mineral processing and reduction of Turkish chromite ore, PhD Thesis, UMIST, 2001.
[9] A.R. Barnes, C.W.P. Finn, S.H. Algie, Prereduction and smelting of chromite concentrate of low chromium to iron ratio, J. South African Inst. of Min. And Metal. 83(3), 49-54, 1983.
[10] G.W. Healy, Carbon reduction of chromites in Bird River and other ores and concentrates at 1200-1700°C, Can. Metal. Quarterly 27(4), 281-285, 1988.
[11] R.H. Nafziger, J.E. Tress, J.I. Paige, Carbothermic reduction of domestic chromites, Metallurgical Transactions B 10B(1), 5-12, 1979.
[12] O. Soykan, R.H. Eric, R.P. King, Reduction mechanism of a natural chromite at 1416°C, Metallurgical Transactions B 22(1), 53-63, 1991.
[13] O. Soykan, R.H. Eric, R.P. King, Kinetics of the reduction of Bushveld complex chromite ore at 1416°C, Metallurgical Transactions B 22(6), 801-810, 1991.
[14] A.B. Hazar-Yoruc, Reduction mechanism of chromite spinel with carbon, Minerals and Metal. Proces. 24(2), 115-120, 2007.
[15] P. Balaz, Extractive Metallurgy of Activated Minerals, Elsevier Science, Amsterdam, 2000.
[16] P. Balaz, Mechanochemistry in Nanoscience and Minerals Engineering, Springer Verlag, Berlin, 2008
[17] D. Tromans, J.A. Meech, enhanced dissolution of minerals: stored energy, amorphism and mechanical activation, Minerals Engineering 14(11), 1359-1377, 2001.
[18] F. Apaydın, A. Atasoy, K.Yıldız, Effects of mechanical activation on the carbothermal reduction of chromite with metallurgical coke, SAU Fen Bilimleri Dergisi, 14(1), 33-38, 2010.
[19] F. Apaydın, A. Atasoy, K. Yıldız, Kromitin karbotermal redüksiyonuna mekanik aktivasyonun etkisi, 15. Uluslararası Metalurji ve Malzeme Kongresi, 11-13 Kasım 2010, İstanbul.
[20] F. Apaydın, A. Atasoy, K. Yıldız, Effect of mechanical activation on carbothermal reduction of chromite with graphite, Canadian Metallurgical Quarterly, 50(2), 113-118, 2011.
[21] A. Atasoy, F.R. Sale, An investigation on the solid state reduction of chromite concentrate, J. Solid State Phenomena 147-149, 752-757, 2009.
[22] N.S. Murti Sundar, V. Seshadri, Kinetics of reduction of synthetic chromite with carbon, Transactions ISIJ, Vol.22, 1982.
[23] F. Habashi, Kinetics of metallurgical processes, Metalurgie Extractive Quebec, Quebec – Canada, 1999.
[24] S.H. Algie, C.W.P. Finn, Reaction mechanisms in the reduction of Winterveld chrome spinel with graphite and carbon, Mintek, South Africa, 1-40, 1984.
[25] A. Ataie, S. Heshmati-Manesh, S. Sheibani, R. Khayati, Y. Firozbakht, J. Sargeini, Solid state reduction of chromite in high carbon ferrochromium – chromite composite pellets, Iranian Journal of Material Science and Engineering, 5(1), 22-28, 2008.
[26] Y.L. Ding, N.A. Warner, Catalytic reduction of carbon-chromite composite pellets by lime, Thermochimica Acta, 292, 85-94, 1997.
[27] J.N. Meegoda, Z. Hu, W. Kamolpornwijit, Conversion of chrome ore processing residue to chrome steel, Final Report, New Jersey Institute of Technology, December, 2007.

Thank you for copying data from http://www.arastirmax.com