You are here

Primer ve Metastatik Beyin Tümörlerinde Radyasyon Hasarını Değerlendirmede Duyarlılık Ağırlıklı Görüntülemenin Rolü

The Role of Susceptibility Weighted Imaging to Evaluate the Radiation Injury of Primary and Metastatic Brain Tumors

Journal Name:

Publication Year:

DOI: 
10.5505/abantmedj.2017.17037
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Introduction: Radiation injury is frequently seen in patients which have been resected from high-grade brain gliomas, medulloblastomas and metastatic lesions and given radiotherapy (RT). Susceptibility-weighted imaging (SWI) is a MRI technique for detecting small vessels and the residue of blood in microhaemorrhages that can not be displayed with conventional MRI. The aim of this study is to investigate the ability of SWI to detect bleeding sites in patients who received RT due to primer and metastatic brain tumors. Methods: 13 women (mean age 37 ± 19.3), 10 males (mean age 37.3 ± 21) a total of 23 patients who have been irradiated with the pathological diagnosis of primary and metastatic brain tumors were included in the study. Supra and infratentorial SWI lesions were counted and compared with conventional MRI. Localizations were classified as cerebellar, brainstem, basal ganglia and cortical-subcortical, periventricular and deep white matter (WM). Lesion counts and the largest lesion diameter were compared with the period after RT. Results: Cerebellar lesions were seen in only 4 patients with medulloblastoma. The cortical-subcortical WM was the most common localization. SWI lesions have been detected most in ependymoma and least in metastases. The largest diameter of the lesions showed a linear relationship with time after RT. The SWI lesion number, operated tumor type, time after RT were not correlated with age and gender (p <0.005). The largest lesion diameter was not significantly correlated with the time after RT and the type of tumor (p <0.005). Discussion and conclusion: SWI is a useful MRI method to evaluate and follow the microbleeds in the areas of radiation damage due to RT for primary and metastatic brain tumors.
Abstract (Original Language): 
Giriş ve amaç: Radyasyon hasarı, rezeke olmuş ve radyoterapi (RT) verilmiş yüksek dereceli beyin gliomları, medulloblastomlar ve metastatik lezyonları olan olgularda sık görülmektedir. Duyarlılık ağırlıklı görüntüleme (DAG), konvansiyonel MR’da görüntülenemeyen küçük damarları ve mikrohemorajiler içindeki rezidü kanı saptamaya yarayan MRG tekniğidir. Bu çalışmanın amacı primer ve metastatik beyin tümörleri nedeniyle RT almış hastalarda DAG ‘nin kanama alanlarını saptama yeteneğini araştırmaktır. Gereç ve yöntemler: Primer ve metastatik beyin tümörleri patolojik tanısıyla RT almış ve DAG yapılmış olan 13 kadın (ort.yaş 37 ± 19.3), 10 erkek (ort.yaş 37.3 ± 21) toplam 23 hasta çalışmaya dahil edildi. Supra ve infratentoriyel DAG lezyonu sayıldı ve konvansiyonel MR’ları ile karşılaştırıldı. Lokalizasyonlarına göre lezyonlar serebellar, beyin sapı, bazal ganglionlar, kortikalsubkortikal, periventriküler ve derin beyaz cevher (BC) lezyonları olarak tanımlandı. Lezyon sayıları ve en büyük lezyon çapları, RT sonrası geçen süre ile karşılaştırıldı. Bulgular: Serebellar lezyonlar sadece dört medulloblastom olgusunda görüldü. Lokalizasyonlarına göre en çok lezyon görülen lokalizasyon kortikal-subkortikal BC idi. DAG lezyonu en fazla epandimom, en az metastaz olgularında saptandı. En büyük lezyon çapları RT sonrası geçen süre ile lineere yakın ilişki gösterdi. DAG’de saptanan lezyon sayıları opere tümör tipi, RT sonrası geçen süre, yaş ve cinsiyet ile korele değildi (p>0.005). En büyük lezyon çapı RT sonrası geçen süre ve tümör tipi ile anlamlı korelasyon göstermedi (p>0.005). Tartişma ve sonuç: DAG, primer ve metastatik beyin tümörleri için RT sonrası radyasyon hasarı olan bölgelerdeki mikrokanamaları değerlendirmek ve takip etmek için yararlı bir MRG yöntemidir.
14
19

REFERENCES

References: 

1. Kortmann RD, Kühl J, Timmermann B, Mittler U, Urban C,
Budach V, Richter E, Willich N, Flentje M, Berthold F,
Slavc I, Wolff J, Meisner C, Wiestler O, Sörensen N,
Warmuth-Metz, Bamberg M. Postoperative neoadjuvant
chemotherapy before radiotherapy as compared to
immediate radiotherapy followed by maintenance
chemotherapy in the treatment of medulloblastoma in
childhood: results of the German prospective randomized
trial HIT ’91. Int J Radiat Oncol Biol Phys 2000;46(2):269–
279.
2. Sheline GE, Wara WM, Smith V. Therapeutic irradiation
and brain injury. Int J Radiat Oncol Biol Phys
1980;6:1215–1228.
3. Gaensler EH, Dillon WP, Edwards MS, Larson DA, Rosenau
W, Wilson CB. Radiation-induced telangiectasia in the
Günbey HP
Abant Med J 2017;6(1):14-19 19
brain simulates cryptic vascular malformations at MR
imaging. Radiology 1994;93:629–636.
4. Vázquez E, Delgado I, Sánchez-Montañez A, Barber I,
Sánchez-Toledo J, Enríquez G. Side effects of oncologic
therapies in the pediatric central nervous system: update
on neuroimaging findings. Radiographics
2011;31(4):1123–1139
5. Mori N, Miki Y, Kikuta K, Fushimi Y, Okada T, Urayama S,
Sawamoto N, Fukuyama H, Hashimoto N, Togashi K.
Microbleeds in moyamoya disease: susceptibilityweighted
imaging versus T2_-weighted imaging at 3
Tesla. Invest Radiol 2008;43:574–579
6. Rauscher A, Sedlacik J, Deistung A, Mentzel H-J,
Reichenbach JR. Susceptibility weighted imaging: data
acquisition, image reconstruction and clinical
applications. Z Med Phys 2006;16(4):240–250
7. Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE,
Zamorano LJ Barger G, Hu J, Xu Y, Prabhakaran PK,
Elangovan IR, Neelavalli J, Reichenbach JR. Susceptibilityweighted
imaging to visualize blood products and
improve tumor contrast in the study of brain masses. J
Magn Reson Imaging 2006;24(1):41–51
8. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility
weighted imaging: technical aspects and clinical
applications, part 2. AJNR Am J Neuroradiol
2009;30(2):232–252
9. Bulut HT, Sarıca MA, and Baykan AH. The value of
susceptibility weighted magnetic resonance imaging in
evaluation of patients with familial cerebral cavernous
angioma. Int J Clin Exp Med. 2014;15;7(12):5296-5302
10. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-CN.
Susceptibility-weighted imaging: technical aspects and
clinical applications, part 1. AJNR 2009;30(1):19–30
11. Valk PE, Dillon WP. Radiation-injury of the brain. Am J
Neuroradiol 1991;12(1):45–62
12. DeAngelis LM, Delattre JY, Posner JB. Radiation-induced
dementia in patients cured of brain metastases.
Neurology. 1989; 39(6):789–796.
13. Surma-aho O, Niemela M, Vilkki J, Kouri M, Brander A,
Salonen O, Paetau A, Kallio M, Pyykkönen J, Jääskeläine L.
Adverse long-term effects of brain radiotherapy in adult
low-grade glioma patients. Neurology 2001;56(10):1285–
1290.
14. Pruzincova´ L, Steno J, Srbecky´ M, Kalina P,
Rychlý B, Bolješíková E, Chorváth M, Novotný M, Pročka
V, Makaiová I, Belan V. MR imaging of late radiation
therapy- and chemotherapy-induced injury: a pictorial
essay. Eur Radiol 2009;19:2716–2727
15. Chan YL, Leung SF, King AD, Choi PHK, Metreweli C. Late
radiation injury to the temporal lobes: morphologic
evaluation at MR imaging. Radiology 1999;213:800–807
16. Peters S, Pahl R, Claviez A, & Jansen O. Detection of
irreversible changes in susceptibility-weighted images
after whole-brain irradiation of children. Neuroradiology
2013;55(7), 853-859
17. Zeng, QS, Kang XS, Li CF, & Zhou GY. Detection of
hemorrhagic hypointense foci in radiation injury region
using susceptibility-weighted imaging. Acta Radiologica
2011;52(1), 115-119
18. Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM.
Susceptibility-weighted MR imaging of radiation therapyinduced
cerebral microbleeds in patients with glioma: a
comparison between 3T and 7T. Neuroradiology
2014;56(2), 91-96
19. Lupo JM, Chuang CF, Chang SM, Barani IJ, Jimenez B, Hess
CP, Nelson SJ. 7-Tesla susceptibility-weighted imaging to
assess the effects of radiotherapy on normal-appearing
brain in patients with glioma. International Journal of
Radiation Oncology* Biology* Physics 2012; 82(3), e493-
e500.
20. Lew SM, Morgan JN, Psaty E, Lefton DR, Allen JC, Abbott
R. Cumulative incidence of radiation-induced cavernomas
in long-term survivors of medulloblastoma. J Neurosurg
2006;104(2 Suppl):103–107
21. Vinchon M, Leblond P, Caron S, Delestret I, Baroncini M,
Coche B. Radiation-induced tumors in children irradiated
for brain tumor: a longitudinal study. Childs Nerv Syst
2011;27(3):445–453
22. Poussaint TY, Siffert J, Barnes PD, Pomeroy SL,
Goumnerova LC, Anthony DC, Sallan SE, Tarbell NJ.
Hemorrhagic vasculopathy after treatment of central
nervous system neoplasia in childhood: diagnosis and
follow-up. AJNR 1995;16(4):693–699
23. Lee AW, Ng SH, Ho JH, Tse VK, Poon YF, Tse CC, Au GK, O
SK, Lau WH, Foo WW. Clinical diagnosis of late temporal
lobe necrosis following radiation therapy for
nasopharyngeal carcinoma. Cancer 1988;61:1535–154

Thank you for copying data from http://www.arastirmax.com