You are here

Anti-mitotik İlaçla Tetiklenen Uzun Süreli Mitotik Areste Hücresel Yanıtın Çeşitliliği

Variation in Cellular Responses to Anti-mitotic Drug-Induced Prolonged Mitotic Arrest

Journal Name:

Publication Year:

DOI: 
10.5505/abantmedj.2017.50103
Abstract (2. Language): 
Anti-mitotic drugs, which are successfully used in cancer treatment today, trigger chronic activation of the “Spindle Assembly Checkpoint (SAC)” by targeting microtubules. Chronic activation of the SAC induced by anti-mitotic drugs causes a prolonged mitotic arrest in all cancer cell lines tested. However, there is not a single cellular response to the prolonged arrest. In other words, cells can undergo different fates following the prolonged arrest. Therefore, cells from different cancer types, even cells from the same cancer type in different patients may differ greatly by their susceptibilities to anti-mitotic drugs. The variation in cellular responses to these drugs presents a serious problem in cancer treatment. Therefore, understanding the molecular basis of the cell fate determination following the prolonged arrest might provide important information to develop more successful strategies in cancer treatment. Here, we review the SAC as a pathway activated by anti-mitotic drugs as well as its role in cancer. We also discuss the different cell fates following the prolonged arrest induced by these drugs and describe a recently proposed model to explain how cells may commit to a certain cell fate.
Abstract (Original Language): 
Günümüzde kanser tedavisinde başarıyla kullanılan anti-mitotik ilaçlar, mikrotübülleri hedef alarak “İğ İpliği Kontrol Noktası (İKN)” nın kronik aktivasyonunu tetikler. Anti-mitotik ilaçlarla tetiklenen kronik İKN aktivasyonu, bu güne kadar test edilen tüm hücre hatlarında uzun süreli mitotik-areste yol açmıştır. Ancak, uzun süreli mitotik areste karşı oluşan tek tip bir hücresel cevap bulunmamaktadır. Diğer bir deyişle, hücreler uzun süreli mitotik aresti takiben farklı post-mitotik kaderlere maruz kalabilirler. Bu nedenle, farklı kanser tiplerindeki hücreler, hatta farklı hastalara ait aynı kanser tipindeki hücreler anti-mitotik ilaçlara gösterdikleri hassasiyet açısından büyük farklılıklar gösterebilirler. Bu ilaçlara karşı gösterilen hücresel cevaplardaki çeşitlilik kanser tedavisinde ciddi bir sorun teşkil etmektedir. Bu nedenle, uzun süreli mitotik aresti takiben hangi hücre kaderine teslim olunacağı kararının moleküler temellerinin iyi anlaşılması kanser tedavisinde daha başarılı stratejiler geliştirebilmek için oldukça önemli bilgiler sağlayabilir. Bu derlemede, İKN’yi antimitotik ilaçlarla aktive olan bir sinyal yolağı olarak ve kanserdeki rolü açısından değerlendirdik. Ayrıca, anti-mitotik ilaçlarla tetiklenen uzun süreli mitotik aresti takip eden farklı hücre kaderlerinin neler olduğunu ve bunların arasından hücrelerin nasıl belirli bir kadere teslim olduğunu açıklayan yeni bir modeli tartıştık.
134
143

REFERENCES

References: 

1. Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy
and cancer. Curr Opin Genet Dev 2007; 17(2):157-62.
2. Stukenberg PT, Burke DJ. Connecting the microtubule
attachment status of each kinetochore to cell cycle arrest
through the spindle assembly checkpoint. Chromosoma
2015; 124(4):463-80.
3. Rieder CL, Salmon ED. Motile kinetochores and polar
ejection forces dictate chromosome position on the
vertebrate mitotic spindle. J Cell Biol 1994; 124(3), 223-233.
4. Li X, Nicklas RB. Mitotic forces control a cell-cycle
checkpoint. Nature 1995; 373(6515), 630-632.
5. Draviam VM, Xie S, Sorger PK. Chromosome segregation
and genomic stability. Curr Opin Genet Dev 2004; 14(2),
120-125.
6. Basu J, Bousbaa H, Logarinho E, Li Z, Williams BC, Lopes C,
Apoptosis
Adaptation
4N
Arrest in G1
Progression cell cycle
Death in G1
Prolonged Mitotic Arrest
(Chronic SAC Activation)
Cell Fate
Normal Mitosis
Anti-mitotic
Drug
Atalay PB ve ark.
Abant Med J 2017;6(3):134-143 142
Sunkel CE, Goldberg ML. Mutations in the essential spindle
checkpoint gene bub1 cause chromosome missegregation
and fail to block apoptosis in Drosophila. J Cell Biol 1999;
146, 13–28.
7. Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK.
Chromosome missegregation and apoptosis in mice lacking
the mitotic checkpoint protein Mad2. Cell 2000;
101(6):635-45.
8. Kitagawa R, Rose AM. Components of the spindle-assembly
checkpoint are essential in caenorhabditis elegans. Nat Cell
Biol 1999; 1(8), 514-521.
9. Gillett ES, Espelin CW, Sorger PK. Spindle checkpoint
proteins and chromosome microtubule attachment in
budding yeast. J Cell Biol 2004; 164(4), 535-546.
10. van der Vaart B, Akhmanova A, Straube A. Regulation of
microtubule dynamic instability. Biochem Soc Trans 2009;
37(Pt 5):1007-13.
11. Kapoor TM, Foley EA. Microtubule attachment and spindle
assembly checkpoint at the kinetochore. Nat Rev Mol Cell
Biol 2013; 14(1):25-37.
12. Biggins S, Walczak CE. Captivating capture: how
microtubules attach to kinetochores. Curr Biol 2003; 13
(11):R449-60.
13. Tanaka TU. Bi-orienting chromosomes: acrobatics on the
mitotic spindle. Chromosoma 2008; 117(6):521-33.
14. Weaver BA, Cleveland DW. Does aneuploidy cause cancer?
Curr Opin Cell Biol 2006; 18, 658–667.
15. Pinsky BA, Biggins S. The spindle checkpoint: tension versus
attachment. Trends Cell Biol 2005; 15(9):486-93.
16. Waters JC, Skibbens RV, Salmon ED. Oscillating mitotic newt
lung cell kinetochores are, on average, under tension and
rarely push. J Cell Sci 1996; 109 (Pt 12), 2823-2831.
17. King JM, Nicklas RB. Tension on chromosomes increases the
number of kinetochore microtubules but only within limits.
J of Cell Sci 2000; 113 Pt 21, 3815-3823.
18. Rieder CL, Schultz A, Cole R, Sluder G. Anaphase onset in
vertebrate somatic cells is controlled by a checkpoint that
monitors sister kinetochore attachment to the spindle. J
Cell Biol 1994; 127(5):1301-10.
19. Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis
RL. Mammalian mad2 and bub1/bubR1 recognize distinct
spindle-attachment and kinetochore-tension checkpoints.
Proc Natl Acad Sci USA 2001; 98(8), 4492-4497.
20. Matson DR, Demirel PB,Stukenberg PT, Burke DJ. A
conserved role for COMA/CENP-H/I/N kinetochore proteins
in the spindle checkpoint. Genes Dev 2012; 26(6):542-7.
21. Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the
APC/C in HeLa cells is mediated by a complex of BUBR1,
BUB3, CDC20, and MAD2. J Cell Biol 2001; 154(5):925-36.
22. Shen Z. Genomic instability and cancer: an introduction. J
Mol Cell Biol 2011; 3(1):1-3.
23. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, et al.
Mutations of mitotic checkpoint genes in human cancers.
Nature 1998; 392, 300–303.
24. Sotillo R, Hernando E, Díaz-Rodríguez E, Teruya-Feldstein J,
Cordon-Cardo C, et al., Mad2 overexpression promotes
aneuploidy and tumorigenesis in mice. Cancer Cell 2007;
11(1):9-23.
25. Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and
cancer. Oncogene 2004; 23(11): 2016-27.
26. Kops GJ, Foltz DR, Cleveland DW. Lethality to human cancer
cells through massive chromosome loss by inhibition of the
mitotic checkpoint. Proc Natl Acad Sci USA 2004; 101:
8699–8704.
27. Gascoigne KE, Taylor SS. How do anti-mitotic drugs kill
cancer cells? J Cell Sci 2009; 122(Pt 15): 2579-85.
28. Stobbe CC, Park SJ, Chapman J.D. The radiation
hypersensitivity of cells at mitosis. Int J Radiat Biol 2002;
78(12):1149-57.
29. Hughes A.F. The effect of inhibitory substances on cell
division; a study on living cells in tissue cultures. Q J Microsc
Sci 1950; 91(3):251-77.
30. Jordan MA, Wilson L. Microtubules as a target for
anticancer drugs. Nat Rev Cancer 2004; 4(4): 253-65.
31. Fauzee NJ. Taxanes: promising anti-cancer drugs. Asian Pac
J Cancer Prev 2011; 12(4): 837-51.
32. Kelling J, Sullivan K, Wilson L, Jordan MA. Suppression of
centromere dynamics by Taxol in living osteosarcoma cells.
Cancer Res 2003; 63, 2794-2801.
33. Rai SS, Wolff J. Localization of the vinblastine-binding site
on beta-tubulin. J Biol Chem 1996; 271,14707-14711.
34. Huang HC, Shi J, Orth JD, Mitchison TJ. Cell death when the
SAC is out of commission. Cell Cycle 2010; 9(11):2049-50.
35. Minhas KM, Singh B, Jiang WW, Sidransky D, Califano JA.
Spindle assembly checkpoint defects and chromosomal
instability in head and neck squamous cell carcinoma. Int J
Cancer 2003; 107(1):46-52.
36. Dumontet C, Jordan MA. Microtubule-binding agents: a
dynamic field of cancer therapeutics. Nat Rev Drug Discov
2010; 9(10):790-803.
37. Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules
by natural agents for cancer therapy. Mol Cancer Ther
2014; 13(2):275-84.
38. Perez EA. Microtubule inhibitors: Differentiating tubulininhibiting
agents based on mechanisms of action, clinical
activity, and resistance. Mol Cancer Ther 2009; 8(8):2086-
95.
39. Ganguly A, Cabral F. New insights into mechanisms of
resistance to microtubule inhibitors. Biochim Biophys Acta
2011; 1816(2):164-71.
40. Giannakakou P1, Sackett DL, Kang YK, Zhan Z, Buters JT,
Fojo T, Poruchynsky MS. Paclitaxel-resistant human ovarian
cancer cells have mutant beta-tubulins that exhibit
impaired paclitaxel-driven polymerization. J Biol Chem
1997; 272(27):17118-25.
41. Kamath K, Wilson L, Cabral F, Jordan MS. βIII-tubulin
induces paclitaxel resistance in association with reduced
effects on microtubule dynamic instability. J Biol Chem
2005;280:12902–7.
42. Pusztai L. Markers predicting clinical benefit in breast
cancer from microtubule-targeting agents. Ann Oncol
2007;18:xii15–20.
43. Chan KS, Koh CG, Li HY. Mitosis-targeted anti-cancer
therapies: where they stand. Cell Death Dis 2012; 3:e411.
Atalay PB ve ark.
Abant Med J 2017;6(3):134-143 143
44. Gascoigne KE, Taylor SS. Cancer Cells Display Profound
intra- and interline variation following Prolonged Exposure
to Antimitotic Drugs. Cancer Cell 2008; 14 (2): 111-122.
45. Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W,
Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, Belmont LD,
Kaminker JS, O'Rourke KM, Pujara K, Kohli PB, Johnson AR,
Chiu ML, Lill JR, Jackson PK, Fairbrother WJ, Seshagiri S,
Ludlam MJ, Leong KG, Dueber EC, Maecker H, Huang DC,
Dixit VM. Sensitivity to antitubulin chemotherapeutics is
regulated by MCL1 and FBW7. Nature 2011;
471(7336):110-4.
46. Matson DR, Stukenberg PT. Spindle Poisons and Cell Fate: A
Tale of Two Pathways. Mol Interv 2011; 11, 141-150.
47. Page AM, Hieter P. The anaphase-promoting complex: new
subunits and regulators. Annu Rev Biochem 1999; 68:583-
609.
48. Rieder CL, Maiato H. Stuck in division or passing through:
what happens when cells cannot satisfy the spindle
assembly checkpoint. Dev Cell 2004; 7: 637–651.

Thank you for copying data from http://www.arastirmax.com