You are here

Didaktik Durumlar Teorisi Işığında İlköğretim Öğrencilerine Matematiksel Süreçlerin Yaşatılması

Involving Primary School Students In Mathematical Processes Through Theory of Didactical Situations

Journal Name:

Publication Year:

Abstract (2. Language): 
Mathematical processes concept is frequently invoked in curricula but no definition is given. The aim of this paper is to clarify what this concept could mean and, to come up with suggestions about how primary school students could get involved in these processes. Theory of didactical situations, which was developed by Brousseau, was used as theoretical framework and the paper focused on the analysis of an activity designed and carried out on the basis of this theory. This activity, which involved 20 fifth grade students (11-12 years old) and lasted about 75 minutes, came from a number of activities carried out in a project and, in an environment specifically designed. The analysis of the activity showed that theory of didactical situations could provide appropriate tools to involve primary school students in mathematical processes while putting them in the centre of these processes.
Abstract (Original Language): 
Matematiksel süreçler kavramı son zamanlarda programlarda sıklıkla yer verilen fakat net bir tanımına rastlanmayan bir kavram olarak karşımıza çıkmaktadır. Bu çalışmanın amacı matematiksel süreçler kavramına açıklık getirmek ve ilköğretim öğrencilerine bu süreçlerin nasıl yaşatılabileceği konusunda teori ve uygulama temelli bazı öneriler geliştirebilmektir. Çalışmada matematik eğitimi alanında Guy Brousseau önderliğinde geliştirilmiş olan Didaktik Durumlar Teorisinin prensipleri benimsenmiş ve bu prensipler doğrultusunda tasarlanıp uygulanan bir etkinliğin analizlerine yer verilmiştir. 20 ilköğretim beşinci sınıf öğrencisinin katıldığı etkinlik bir proje çerçevesinde özel olarak tasarlanmış bir sınıf ortamında gerçekleştirilmiş ve yaklaşık 75 dakika sürmüştür. Etkinliğin analizleri Didaktik Durumlar Teorisinin ilköğretim seviyesinde matematiksel süreçlerin yaşatılabilmesi ve öğrencilerin bu süreçlerin merkezinde yer almaları için uygun araçları sunduğunu göstermektedir.
FULL TEXT (PDF): 
17-34

REFERENCES

References: 

Arsac, G., Germain, G. & Mante, M. (1991). Probléme ouvert et situation-problème. IREM de Lyon.
Brousseau, G. (1997). Theory of didactical situations in mathematics : Didactique des mathématiques, 1970-1990. Kluwer Academic Publishers (Springer).
Bybee, R., Taylor, J. A., Gardner, A., Van Scotter, P., Carlson, J., Westbrook, A. & Landes, N. (2006). The BSCS 5E Instructional Model: Origins and Effectiveness. Colorado Springs, CO: BSCS.
Chatel, E. (2002), L'action éducative et la logique de la situation. Fondements théoriques d'une approche pragmatique des faits d'enseignement. Revue française de pédagogie, 141, 37-46.
Erdoğan, A., Özdemir Erdoğan, E., Garan, O. & Güler, M. (2012). Matematiğin Popülerleştirilmesine Yönelik Tasarlanan Bir Eğitim-Öğretim Ortamının Değerlendirilmesi. İlköğretim Online, 11(1), 51-74. 24/09/2012 tarihinde http://ilkogretim-online.org.tr adresinden alınmıştır.
Giusti, E. (1999). La naissance des objets mathématiques. Paris : Ellipses.
Hiebert, J., Carpenter, T.P., Fennema, E., Fuson, K., Human, P., Murray, H., Olivier, A. & Wearne D. (1996). Problem solving as a basis for reform in curriculum and instruction: the case of mathematics. Educational Researcher, 25(4),12-21.
Mahammad, N. (1998). Histoire des équations algébriques. Paris : Diderot
NCTM, (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics. Reston, VA: Author.
OECD, (2010). PISA 2012 Mathematics Framwork. Retrieved September 24, 2012, from http://www.oecd.org.
Ontario, (2005). The Ontario Curriculum Grades 1-8: Mathematics, 2005 (revised). Retrieved September, 24, 2012, from http://www.edu.gov.on.ca
Ross, D. (2008). Game Theory. In Zalta, E.N. (Eds.), The Stanford Encyclopedia of Philosophy. Retrieved September 24, 2012, from http://plato.stanford.edu/archives/spr2008/entries/game-theory/.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Eds.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York: MacMillan.
Sensevy, G., Schubauer-Leoni, M.L., Mercier, A., Ligozat, F. & Perrot, G. (2005). An attempt to model the teacher’s action in the mathematics class. In C. Laborde, M.-J. Perrin-Glorian & A. Sierpinska (Eds.), Beyond the apparent banality of the mathematics classroom (pp. 153-181), Springer.
Thisse, J.-F. (2010). Theori des jeux: une introduction . Micro licence.
Van de Walle, J. (2004). Elementary and Middle School Mathematics: Teaching Developmentally. Boston: Allyn and Bacon (5th).
Wallace, T., & Even, R. (2005). Hearing students: the complexity of understanding what they are saying, showing and doing. Journal of Mathematics Teacher Education, 8, 393-417.
Warfield, V.-M. (2006). Invitation to didactique. Retrieved September 24, 2012, from http://www.math.washington.edu/~warfield/Inv%20to%20Did66%207-22-06.pdf
Wood, T. (1999). Creating a context for argument in mathematics class. Journal for Research in Mathematics Education, 30, 171-191.

Thank you for copying data from http://www.arastirmax.com