You are here

TABAKALI RASGELE ÖRNEKLEMEDE YARDIMCI DEĞİŞKENLER KULLANARAK KİTLE ORTALAMASI İÇİN DEĞİŞTİRİLMİŞ ÜSTEL TİP TAHMİN EDİCİ

MODIFIED EXPONENTIAL TYPE ESTIMATOR FOR POPULATION MEAN USING AUXILIARY VARIABLES IN STRATIFIED RANDOM SAMPLING

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Technology’s perpetual vicissitude and product models’ distinction in industrial market have a crucial effect on forecasting demand for spare components. In order to set forth the future demand rates for products, inventory managers repetitively update their prognostications. Bayesian model is utilizing a prior probability distribution for the injunctive authorization rate which was habituated in order to get optimum levels of account over a number of periods. However, under sundry demand rates like intermittent demand, Bayesian Model’s performance has not been analyzed. With the help of a research question, the study investigates that circumstance.
Abstract (Original Language): 
Bu çalışmada, kitle ortalaması için yardımcı değişken bilgisi kullanarak yeni bir üstel tip tahmin edici tabakalı örneklemede geliştirilmiştir. Elde edilen tahmin edicinin etkinliğini değerlendirebilmek için, ilk olarak literatürdeki bazı tahmin ediciler incelenmiş ve önerilen stratejinin optimum özelliği incelenmiştir. Önerilen tahmin edicinin özelliğini değerlendirebilmek için optimallik koşulu altında benzetim çalışması ve gerçek veri uygulamaları yapılmıştır. Sonuçlar elde edilen tahmin edicinin var olan oran ve çarpım tahmin edicilerinden ve tabakalı örnekleme düzeninde yansız tahmin ediciden daha etkin olduğunu göstermiştir.
49
56

JEL Codes:

REFERENCES

References: 

[1]. Suwattee, P., 2009, Sampling Technique. BKK: Thailand.
[2]. Cochran, W.G., 1977, Sampling Techniques, Third Edition, Wiley
Eastern Limited.
[3]. Robson, D.S., 1957, Applications of multivariate polykays to the
theory of unbiased ratio type estimation. Journal of American
Statistical Association, 52, 511–522.
[4]. Murthy, M.N., 1967, Sampling Theory and Methods, Statistical
Publishing Society, Calcutta, In-dia.
[5]. Dianna, G., 1993, A class of estimators of the population mean in
stratified random sampling. Statistica, 53, 59-66.
[6]. Kadilar, C., Cingi, H., 2003, Ratio estimators in stratified random
sampling. Biometrical Journal, 45, 218-225.
[7]. Singh, H.P., Vishwakarma, G.K., 2005, Combined ratio-product
estimator of finite population mean in stratified sampling.
Metodologia de Encuesta, 8, 35- 44.
[8]. Singh, H.P., Vishwakarma, G. K., 2008, A family of estimators of
population mean using auxil-iary information in stratified
sampling. Communication in Statistics Theory and Methods, 37,
1038-1050.
[9]. Singh, R., Chauhan, P., Sawan, N., Smarandache, F. 2009.
Improvement in estimating the popu-lation mean using
exponential estimator in simple random sampling. International
Journal of Statistics and Economics, 3, 13-18.
[10]. Bahl, S., Tuteja, R.K., 1991. Ratio and product type exponential
estimator. Journal of Information & Optimization Sciences, 12,
159-163.
[11]. Singh H.P., Vishwakarma, G.K., 2007, Modified exponential ratio
and product estimators for fi-nite population mean in double
sampling. Austrian Journal of Statistics, 36, 217-225.
[12]. Hansen, M.H., Hurwitz, W.N., Gurney, M. 1946. Problem and
methods of the sample survey of business, Journal of American
Statistical Association, 41, 174-189.
[13]. Singh, H. P., Tailor, R., Singh, S., Kim, J.M., 2008, A modified
estimator of population mean us-ing power transformation,
Statistical Papers, 49, 37–58.
[14]. Kadilar, C., Cingi, H., 2005, A new ratio estimator in stratified
sampling, Communication in Sta-tistics: Theory and Methods, 34,
597–602.
[15]. Japan Meteorological Society,
http://www.data.jma.go.jp/obd/stats/data/en/index.html).

Thank you for copying data from http://www.arastirmax.com