Abdalla, S. Z. S. (2012). Modelling Exchange Rate Volatility using GARCH Models: Empirical Evidence from Arab Countries. International Journal of Economics and Finance, 4(3), 1206–1214.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (1976). Time Series Analysis: Forecasting and Control. San Francisco: Holdenday.
Campbell, J. Y., Lo, A. W.-C., MacKinlay, A. C., & others. (1997). The Econometrics of Financial Markets (Vol. 2). princeton University press Princeton, NJ.
Cao, L., & Tay, F. E. H. (2001). Financial Forecasting Using Support Vector Machines. Neural Computing & Applications, 10, 184–202.
Çil Yavuz, N. (2015). Finansal Ekonometri (2nd ed.). İstanbul: Der Yayınları.
Enders, W. (2010). Applied Econometric Time Series (3rd ed.). John Wiley & Sons.
Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987–1007.
Hamilton, J. D. (1994). Time series analysis (Vol. 2). Princeton University press Princeton.
Haykin, S. (2009), Neural Networks and Learning Machines, Third Edition, New York, Pearson Prentice Hall.
Hossain, A., & Nasser, M. (2011). Comparison of the finite mixture of ARMA-GARCH, back propagation neural networks and support-vector machines in forecasting financial returns. Journal of Applied Statistics, 38(3), 533–551.
Huang, G.-B., & Babri, H. A. (1998). Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 9(1), 224–229.
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) (Vol. 2, pp. 985–990 vol.2).
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501.
Huang, W., Lai, K. K., Nakamori, Y., & Wang, S. (2004). Forecasting Foreign Exchange Rates with Artificial Neural Networks - A Review. International Journal of Information Technology & Decision Making, 3(1), 145–165.
Judge, G. G., Hill, R. C., Griffiths, W., Lutkepohl, H., & Lee, T. C. (1988). Introduction to the Theory and Practice of Econometrics.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.
Nelson, D. B., & Cao, C. Q. (1992). Inequality Constraints in the Univariate GARCH Model. Journal of Business & Economic Statistics, 10(2), 229–235.
Öztemel, E. (2006). Yapay Sinir Ağları (3. Baskı). İstanbul: Papatya Yayıncılık.
Package, T., Gosso, A. A., & Training, D. (2015). Package “ elmNN .”
Pham, H. T., & Yang, B. S. (2010). Estimation and forecasting of machine health condition using ARMA/GARCH model. Mechanical Systems and Signal Processing, 24(2), 546–558.
Tay, F. E., & Cao, L. (2001). Application of support vector machines in financial time series forecasting. Omega, 29(4), 309–317.
Vilasuso, J. (2002). Forecasting Exchange Rate Volatility. Economics Letters, 76, 59–64.
West, P. M., Brockett, P. L., & Golden, L. L. (1997). A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice. Marketing Science, 16(4), 370–391.
Thank you for copying data from http://www.arastirmax.com