RapidMiner Open Source Predictive Analytics Platform [Online]. Available: https://www.rapidminer.com/ 2016].
Abramowitz, M. & Stegun, I. A. 1964. Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Courier Corporation.
Adrangi, B. & Chatrath, A. 2002. The Dynamics of Palladium and Platinum Prices. Computational Economics, 19, 179-195.
Akgiray, V., Booth, G. G., Hatem, J. J. & Mustafa, C. 1991. Conditional Dependence in Precious Metal Prices. Financial Review, 26, 367-386.
Arango Thomas, L., Arias, F. & Florez, L. 2012. Determinants of commodity prices. Applied Economics, 44, 135-145.
Awokuse, T. O. & Yang, J. 2003. The informational role of commodity prices in formulating monetary policy: a reexamination. Economics Letters, 79, 219-224.
Baffes, J. 2007. Oil spills on other commodities. Resources Policy, 32, 126-134.
Batten, J. A., Ciner, C. & Lucey, B. M. 2010. The macroeconomic determinants of volatility in precious metals markets. Resources Policy, 35, 65-71.
Beahm, D. 2008. Five Fundamentals Will Drive Gold Price Higher in 2008.
Benli, Y. K. & Yildiz, A. 2015. 21) Altın Fiyatının Zaman Serisi Yöntemleri ve Yapay Sinir Ağları ile Öngörüsü. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 42.
Caudill, M. 1987. Neural networks primer, part I. AI Expert, 2, 46-52.
Chen, M.-H. 2010. Understanding world metals prices—Returns, volatility and diversification. Resources Policy, 35, 127-140.
Chen, X. & Fang, Y. 2013. Enterprise systems in financial sector–an application in precious metal trading forecasting. Enterprise Information Systems, 7, 558-568.
Hammoudeh, S. & Yuan, Y. 2008. Metal volatility in presence of oil and interest rate shocks. Energy Economics, 30, 606-620.
Hyndman, R. J. & Athanasopoulos, G. 2014. Forecasting: principles and practice, OTexts.
Hyndman, R. J. & Koehler, A. B. 2006. Another look at measures of forecast accuracy. International journal of forecasting, 22, 679-688.
Jain, A. & Ghosh, S. 2013. Dynamics of global oil prices, exchange rate and precious metal prices in India. Resources Policy, 38, 88-93.
Kendall, M. G. 1938. A new measure of rank correlation. Biometrika, 30, 81-93.
Minsky, M., Minsky, M. L. & Papert, S. 1969. Perceptrons: An Introduction to Computational Geometry.
Minsky, M. & Papert, S. 1987. Perceptrons - Expanded Edition: An Introduction to Computational Geometry.
Morariu, N., Iancu, E. & Vlad, S. 2009. A neural network model for time series forecasting. Romanian journal of economic forecasting, 12, 213-223.
Morris, R. G. 1999. D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res Bull, 50, 437.
Palaskas, T. B. 1993. Commodity prices: implications of the co-movement and excess co-movement. Economic Crisis in Developing Countries: New Perspectives on Commodities, Trade and Finance, edited by M. Nissake, and A. Hewitt. New York: printer, 89-103.
Pindyck, R. S. & Rotemberg, J. J. 1988. The excess co-movement of commodity prices. National Bureau of Economic Research Cambridge, Mass., USA.
Plourde, A. & Watkins, G. C. 1998. Crude oil prices between 1985 and 1994: how volatile in relation to other commodities? Resource and Energy Economics, 20, 245-262.
Sauerbeck, A. 1886. Prices of commodities and the precious metals. Journal of the Statistical Society of London, 49, 581-648.
Sensoy, A. 2013. Dynamic relationship between precious metals. Resources Policy, 38, 504-511.
Soytas, U., Sari, R., Hammoudeh, S. & Hacihasanoglu, E. 2009. World oil prices, precious metal prices and macroeconomy in Turkey. Energy Policy, 37, 5557-5566.
Çelik, Başarır The Prediction of Precious Metal Prices via Artificial Neural Network by Using RapidMiner 54
Alphanumeric Journal
Volume 5, Issue 1, 2017
Spearman, C. 1904. The proof and measurement of association between two things. The American journal of psychology, 15, 72-101.
Trivedi, P. K. 1995. Tests of some hypotheses about the time series behavior of commodity prices. Advances in Econometrics and Quantitative Economics: Essays in Honor of CR Rao, Oxford: Blackwell, 382-412.
Werbos, P. 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard University.
Werbos, P. J. 1994. The roots of backpropagation: from ordered derivatives to neural networks and political forecasting, Wiley-Interscience.
Thank you for copying data from http://www.arastirmax.com