Anlauf, J.K., & Biehl, M. (1989). The adatron: an adaptive perceptron algorithm. EPL (Europhysics
Letters). 10(7): p. 687.
Basilico, J., & Hofmann, T. (2004). Unifying collaborative and content-based filtering. In Proceedings
of the twenty-first international conference on Machine learning. p. 9. ACM.
Ben-Hur, A. & Noble, W.S. (2005). Kernel methods for predicting protein–protein
interactions. Bioinformatics, 21(suppl 1): pp.i38-i46.
Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with online and active
learning. Journal of Machine Learning Research. 6: pp.1579-1619.
Boser, B.E., Guyon, I.M., & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers.
In the Proceedings of the fifth annual workshop on Computational learning theory. pp: 144-
152. ACM.
Bottou, L., & LeCun, Y. (2003). Large scale online learning. In NIPS. 30: p. 77.
Dietterich, T., & Bakiri G. (1995). Solving multiclass learning problems via error correcting output
codes, Journal of Artificial Intelligence Research, 2: 263-286.
Dudoit, S., Fridlyand, J., & Speed, T. (2002). Comparison of discrimination methods for the
classification of tumors using geneexpression data. J. Am. Stat. Assoc. 97: 77–87.
Freund, Y., & Schapire, R.E. (1999). Large margin classification using the perceptron
algorithm. Machine learning. 37(3): pp.277-296.
Friedman J. (1996). Another approach to polychotomous classifcation, Technical Report, Technical
report, Stanford University, Department of Statistics.
Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal of Machine
Learning Research. 2: pp.213-242.
Kashima, H., Oyama, S., Yamanishi, Y., & Tsuda, K. (2009). On pairwise kernels: An efficient
alternative and generalization analysis. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining. pp. 1030-1037. Springer Berlin Heidelberg.
Li, Y., & Long, P.M. (2002). The relaxed online maximum margin algorithm. Machine Learning. 46(1-
3): pp.361-387.
Mayoraz, E., & Alpaydin E. (1999). Support vector machines for multi-class classification. In the
International Work-Conference on Artificial Neural Networks. Springer Berlin Heidelberg.
Minsky, M., & Papert, S. (1969). Perceptrons.
Taş Gen Örneklerinin Eşli Destek Vektör Makinesi ile Sınıflandırılması 291
Alphanumeric Journal
Volume 5, Issue 2, 2017
Oyama, S., & Manning, C.D. (2004). Using feature conjunctions across examples for learning pairwise
classifiers. In European Conference on Machine Learning. pp. 322-333. Springer Berlin
Heidelberg.
Platt, J.C. (1999). 12 fast training of support vector machines using sequential minimal
optimization. Advances in kernel methods. pp.185-208.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological review, 65(6): p. 386.
Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal estimated sub-gradient solver
for svm. In Proceedings of the 24th international conference on Machine learning. pp. 807-
814. ACM.
Schölkopf, B., & Smola, A.J. (2002). Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT press.
Vert, J.P., Qiu, J., & Noble, W.S. (2007). A new pairwise kernel for biological network inference with
support vector machines. BMC bioinformatics, 8(10): p.S8.
Weston, J., & Watkins, C. (1999). Support vector machines for multi-class pattern recognition.
In ESANN. 99: pp. 219-224.
Xu, W. (2011). Towards optimal one pass large scale learning with averaged stochastic gradient
descent. arXiv preprint arXiv:1107.2490.
Thank you for copying data from http://www.arastirmax.com