You are here

ORGANİK ATIKLARIN TOPRAKTA ÜREAZ AKTİVİTESİNE AİT TERMODİNAMİK PARAMETRELERE ETKİSİ

THE EFFECT OF ORGANIC WASTES ON THERMODYNAMIC PARAMETERS BELONGING TO UREASE ACTIVITY IN SOIL

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, urease activity of organic wastes, such as tea and tobacco waste, hazelnut husk and wheat straw, which have been treated to clay loam soil, and thermodynamic parameters (E a, AH , AS , AG , Q10 ) belonging to urease activity of this enzyme have been determined. The organic waste treatments, which were treated to clay loam soil at 5% dose, have gone through incubation for 30 days at temperature of 25 ± 0.5°C. As a result of incubation, thermodynamic parameters have been calculated by revealing urease activity in soils in a condition of different substrate concentrations (%0, %1, %2, %4, %6, %8, %10, %12), incubation periods (1, 2, 3, 4, 5 and 6 hours) and incubation temperatures (0, 10, 20, 30, 40 and 50°C °C). It has been revealed that organic waste treatments to soils significantly increase urease activity and also, catalyzation level of urease activity, in case of treatment of above mentioned organic wastes, has been determined as follow: tobacco waste>tea waste> hazelnut husk> wheat straw. Generally, it has been observed that values of urease activity in all substrate concentration in control and organic waste treated soils increase more rapidly at 40 and 50 °C versus in other temperatures. The values of thermodynamic parameters belonging to urease activity in all treatments have shown variations. The lowest (5.255-8.341 kJmol-1) and highest (17.189-24.414 kJmol-1) Ea values have been determined in tea waste and wheat hay treatments, correspondingly. And the lowest (2.786-5.876 kJmol-1) AH value has been scanned in tobacco waste treated soils. It has also been concluded that AS values are negative in all treatments, except in case of 10% and 12% substrate concentration levels, where they become stabilized and that AG values vary in 68.965 - 83.869 kJmol-1 interval. The highest (1.212-1.477) and the lowest (1.061-1.169) values of Q10 coefficient have been determined in wheat straw and tobacco waste treatments, correspondingly.
Abstract (Original Language): 
Bu çalışmada, killi tın bünyeli toprağa tütün ve çay atığı, fındık zurufu, buğday samanı gibi organik atık uygulamalarının , üreaz aktivitesi ve bu enzimin aktivitesine ait termodinamik parametreler (Ea , AH , AS, AG , Q10) üzerine olan etkisi araştırılmıştır. Denemede kullanılan organik atıklar kuru ağırlık üzerinden %5 oranında toprağa karıştırılmış, 25 ± 0.5°C' de 30 gün inkübasyona bırakılmıştır. İnkübasyon sonunda farklı substrat konsantrasyonları (%0, %1, %2, %4, %6, %8, %10, %12), inkübasyon periyotları (0, 1, 2, 3, 4, 5 ve 6 saat) ve inkübasyon sıcaklıklarında (0, 10, 20, 30, 40 ve 50°C) topraklardaki üreaz aktivitesi belirlenerek termodinamik parametreler hesaplanmıştır. Deneme sonunda, organik atık uygulamasının üreaz aktivitesini önemli düzeyde artırdığı ve atıkların etkinliklerinin tütün atığı>çay atığı> fındık zurufu> buğday samanı şeklinde sıralandığı saptanmıştır. Genellikle, kontrol ve organik atık uygulanmış topraklarda tüm substrat konsantrasyonlardaki üreaz aktivitesi değerlerinin 40-50 °C sıcaklıklarında diğerlerine oranla daha hızlı bir artış gösterdiği belirlenmiştir. Tüm uygulamalarda üreaz aktivitesine ait termodinamik parametrelerin değerleri farklılık göstermiştir. Ea değerlerinin tütün atığı uygulanmasında en düşük (5.255-8.341 kJmol-1), buğday samanı uygulamasında ise en yüksek (17.189-24.41 4 kJmol-1) olduğu saptanmıştır. En düşük AH (2.786-5.876 kJmol-1) değerleri tütün atığı uygulanmış toprakta belirlenmiştir. Tüm uygulamalarda AS değerlerinin negatif olduğu, %10-12 substrat konsantrasyonu düzeylerinde sabitleştiği; AG değerlerinin ise 68.965-83.869 kJmol-1 aralığında değiştiği saptanmıştır. Q10 katsayısının en yüksek değerleri (1.212-1.477) buğday samanı, en düşük değerleri (1.061-1.169) ise tütün atığı uygulanmasında bulunmuştur.
44-53

REFERENCES

References: 

Alexander, M., 1977. Introduction to Soil Microbiology, Second Edition John Wiley Sons. Inc.New York, USA. Aliev, S. A., Gadgiev, D.A. and Mikailov, F.D.,1984. Kinetic and thermodinamic characteristcs of enzymes - invertasa and ureaza in Azerbaijan soils. Soviet Soil Science 11: 55-66. Arrhenius, S., 1889. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Zeitschrift für Physik Chemie, 4: 226-248.
Atkins, P.W., 2001.
Fizikokimya
. Bilim Yayıncılık, Ankara.
Candemir, F., Gulser, C., 2007. Changes in some chemical and physical properties of a sandy clay loam soil during the decomposition of hazelnut husk. Asian Journal of Chemistry, 19(3): 2452-2460.
Dalal, R.C., 1975. Effect of toluene on the energy barriers in urease activity of soils. Soil. Sci., 120(4): 256-260.
Demir,Z., Gulser, C., 2008. Changes in organic carbon, NO3- N, electrical conductivity values and soil respiration along a soil depth due to surface application
İ. Ekberli, R. Kızılkaya, N. Kars
of organic wastes. Asian Journal of Chemistry, 20(3):
2011-2021.
Devyatova, T.A.,
2006
. Enzymatic activity of leached chernozem upon long-term application of fertilizers. Agroximiya, 1: 12-15.
Ekberli, I.,R.Kızılkaya and Kars, N., 2006. Urease enzyme and its kinetic and thermodynamic parameters in clay loam soil. Asian Journal of Chemistry, 18(4): 3097¬3105.
Frankenberger Jr., W.T., Tabatabai, M.A., 1991a. L-Asparaginase activity of soils. Biology and Fertility of Soils, 11: 6-12.
Frankenberger Jr., W.T., Tabatabai, M.A., 1991b. L-
Glutaminase activity of soils. Soil Biology &
Biochemistry, 23: 869-874.
Gulser, C., Candemir, F., 2004. Changes in Atterberg limits with different organic waste application. In: Proceedings of International Soil Congress (ISC) on Natural Resource Management for Sustainable Development, Erzurum, pp: 8-15.
Hadas, A., Kautsky, L., Goek, M., Kara, E.E., 2004. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover, Soil Biology and Biochemistry 36: 255-266.
Hoffmann, G.G., Teicher, K., 1961. Ein kolorimetrisches verfahren zur bestimmung der urease aktivitat in böden. Zeitschrift für Pflanzenernahrung und Bodenkunde 91:
55-63.
Kacar, B., 1972. Bitki ve toprağın kimyasal analizleri.
I. Bitki analizleri. Ankara Üniversitesi Ziraat Fakültesi
Yayınları,
No
: 453, Ankara. Kızılkaya, R., Bayraklı, B., 2005. Effects of N- enriched
sewage sludge on soil enzyme activities. Applied Soil
Ecology, 30: 192-202.
Kızılkaya,
R.
, Ekberli, İ., 2008. Determination of the effects of hazelnut husk and tea waste treatments on urease enzyme activity and its kinetics in soil. Turkish Journal of Agriculture and Forestry, 32(4): 299-310.
Kızılkaya, R., Ekberli, İ., Kars, N., 2007. Tütün atığı ve buğday samanı uygulanmış toprakta üreaz aktivitesi ve kinetiği. AÜ Ziraat Fakültesi, Tarım Bilimleri Dergisi,
13(3): 186-194.
Kireeva, N. A., Tarasenko, E.M., Shamaeva, A.A., Novoselova, E.I., 2006. Effect of oil products on lipase activity in gray forest soil. Eurasian Soil Science, 8:
1005-1011.
Kiss, S., Dragan-Bularda, M., Radulescu D., 1975.
Biological significance of enzymens accumulated in
soil. Adv.agron., 27: 25-87. Kiss, S., Pasca D., Dragan-Bularda, M., 1998. Enzymology
of disturbed soils. Amsterdam: Elsevier, s: 3-62.
Kononova, M.M., 1966.Soil Organic matter. Pergamon
Press. Elmsford, New York, 544 pp. Kornish-Bouden, E., 1979. Basic Principles of Enzyme
Kinetics [in Russian], Moscow. Khaziev F. Kh., 1982. Ecological Researh of Soil Enzyme
Activity. Nauka Press, Moscow, s: 56-62. Khaziev., F.Kh., 1975. Thermodynamic characteristics of
enzymic reactions in soil. Biol Nauki 10:121-127. Khaziyev, F.K., Gulke, A.Ye.,1991. Enzymatic activity of
soils under agrocenoses: status and problems.
Pochvovedenie 8: 88 -103. Marinari,S., Masciandar, G., Ceccanti, B., Grego, S., 2000.
Inflence of organic and mineral fertilizers on soil
biological and physical properties. Bioresourse
Technology, 72: 9-17. Masciandaro, G., Ceccanti, B., Ronchi, V. and Bauer, C.,
2000. Kinetic parameters of dehydrogenase in the
assessment of the response of soil to vermicompost and
inorganic fertilisers. Biol. Fertil. Soils, 32: 479-483.
Okur, N., Kayıkçıoğlu, H.H., Okur, B., Delibacak, S., 2008.
Organic amendment based on tobacco waste compost and farmyard manure: Influence on soil biological properties and butter-head Lettuce (Lactuca sativa L. var. Capitata L.) Yield. Turkish Journal of Agriculture and Forestry, 32(2): 91-99. Özdemir, N., Gülser, C., Ekberli, İ., Özkaptan, S., 2005. Toprak düzenleyicilerinin asit toprakta strüktürel dayanıklılığa etkisi. Atatürk Üniversitesi Ziraat
Fakültesi Dergisi, 36(2): 151-156.
Özdemir, N., Kızılkaya, R., Sürücü, A., 2000. Farklı organik
atıkların toprakların üreaz enzim aktivitesi üzerine
etkisi. Ekoloji Çevre Dergisi, 37: 23-26. Rowell, D.L.,1996. Soil Science: Methods and Applications.
3rd Edition Longman. London, UK. Skujins, J.J., 1976. Extracellular enzymes in soil. CRC
Critical Reviews in Microbiology, 4: 383-421. Skujins, J. J., 1978. History of Abiontic Soil Enzyme
Research. In:. Bruns RG (ed) Soil enzymes, Academic
Press, London, pp 1-49. Trasar-Cepeda, C., Gil-Sotres, F., 1988. Kinetics of acid
phosphatase activity in various soils of Galicia (NW
Spain). Soil Biology & Biochemistry, 20: 275-280.
Trasar-Cepedaa, C., Gil-Sotresb, F., Leiro, M.C., 2007. Thermodynamic parameters of enzymes in grassland soils from Galicia,NW Spain. Soil Biology & Biochemistry, 39: 311-319.
Troeh, F.R., Thompson, L.M., 1993. Soils and Soil Fertility.
Oxford University Press, New York. Zolotareva, B.N., 2006. Effect of Organic fertilizers on the fertility of old arable glay forest soil. Agroximiya, 9:
13-23.

Thank you for copying data from http://www.arastirmax.com