You are here

BE- FARKLI KOR MATERYALİNİN ÇAPSAL GERİLİM, BÜKÜLME VE SIKIŞTIRMA DİRENCİNİN KARŞILAŞTIRILMASI

COMPARISON OF DIAMETRAL TENSILE, FLEXURAL, AND COMPRESSIVE STRENGTHS OF FIVE CORE BUILD-UP MATERIALS

Journal Name:

Publication Year:

Abstract (2. Language): 
The purpose of this laboratory investigation was to evaluate three mechanical properties; the compressive, diametral tensile and flexural strengths of five different core build-up materials. In this study, a light-actived Hybrid composite resin (President), resin modified glass ionomer (RMGIC) (Vitremer), amalgam (Cavex avalloy), glass-ionomer (GIC) (Logofil) and compomer (Dyract AP) restorative materials were used. 120 samples were prepared according to American Dental Association specification No. 27 for testing diametral tensile strength (DTS), compressive strength (CS) and flexural strength (FS). Forty specimens were prepared in cylindric molds (6 mm in height, 3 mm in diameter) for the CS measurements and forty specimens (3 mm in height, 6 mm in diameter) for diametral tensile strength (DTS). Forty specimens were prepared (25X 2 X 2 mm) for the FS measurements. All cores materials were prepared according to manufacturer's instruction at a temperature of 23.0 +/-1.0 degrees C. Haunsfeldpress and pull machine was used for compressive and flexural strength and the module were determined at a crosshead speed of 0.5 mm/mnn. Diametral testing was carried out at 1 mm/min. Analysis of variance was used for statistically evaluation. Mean compressive, diametral tensile and flexural strengths with associated standard deviations were calculated for each material. The results of this study indicated that the diametral tensile strength, flexural strength and compressive strength of the resin composite (President) and amalgam material were significantly higher than the other tested materials (p<0.001). On the other hand, the diametral tensile strength, flexural strength and compressive strength of glass ionomer based materials (Logofil, Vitremer) were statistically lower than for resin composites, compomer and amalgam.
Abstract (Original Language): 
Bu çalışmanın amac, beş farklı kor materyalinin üç mekanik özelliği; çapsal germe drrenc, sıkıştrrma direnci ve bükülme direncini değerlendirmektir. Bu çalı şma için, ışıkla sertleşen hibrid kompozit rezin (President, Light cure Dynamic Universal hibrit Compoztt, München, Germany), reznn modffye cam yonomer (Vitremer, 3M Dental Products, St. Paul MN, USA), ama/gam (Cavex Avalloy Harlem, Hollanda), cam iyonomer (Logofil, D-Dental Atten, Atten Wade, Germany) ve compomer (Dyract AP) materyalleri kul/anıldı. Çapsal germe drrenc, sıkıştrrma direnci ve bükülme direnci testi için toplam 120 örnek American Dental Association 27 no/u spesffkasyonuna göre hazrrlandı. 6mm yüksekliğinde ve 3mm çapında 40 slrindrrkk örnek, çapsal germe direnci için ve 25X2X2 mm boyutlarında 40 örnek ise bükülme direnci testi için hazrrlandı. Tüm kor materyalleri üretici frrma önerileri doğruttusunda 23.0 +/- 1.0 0C'de hazrrlandı. Testler Hounsfield çekme-sıkıştırma makinesinde, bükülme ve sıkıştrrma geriiim testleri 0.5 mm/dak. ve çapsal geriiim testi için 1 mm/dak. baş/ık hızı ile yaplldı. İstatistiksel değerlendirme için varyans anaiizi kul/anıldı. Her bir materyal için Çapsal germe drrenc, sıkıştrrma direnci ve bükülme direncine ait ortalama ve standart sapma değerleri hesaplandı. Çalışmanın sonuçlarına göre Çapsal germe drrenc, sıkıştrrma direnci ve f/eksural gerl/im direnci açısından Kompozit resin (President) ve Ama/gam(Cavex aval/oy), diğer test edilen materyallere göre önemli derecede yüksek bulundu. (p<0.001). Diğer yandan cam iyonomer esas/ı materyallerin Çapsal germe drrenc, sıkıştrrma direnci ve bükülme direnci resin kompozit, kompomer ve ama/gama göre düşük bulundu.
18-23

REFERENCES

References: 

1. Chan K, AAzarbal P, Kerber P. Bond strength of cements to crown bases. J Prosthet Dent 1981; 46:297.
2. Combe EC, Shaglouf AM, Watts DC, Wlson NH. Mechanical properties of direct core build-up materials. Dent Mater 1999; 15:158-165.
3. Huysmans MC, Van der Varst PG. Finite element analysis of quasistatic and fatigue failure of post and cores. J Dent. 1993; 21:57-64.
4. Huysmans MC, Van der Varst PG. Mechanical longevity estimation model for post-and-core restorations. Dent Mater 1995; 11:252-257.
5. Nicholls JI. Crown retention. II. The effect of convergence angle variation on the computed stresses in the luting agent. J Prosthet Dent 1974; 31:651-657.
6. Yettram AL, Wright KW, Pcckard HM. Fnntte eeement stress anaysis of the crowns of normal and restored teeth. J Dent Res 1976;55:1004-1011.
7. Craig RG, Farah JW. Stress analysis and design of single restorations and fixed bridges.Oral Sci Rev 1977; 10:45-74.
8. Cho GC, Kaneko LM, Donovan TE, Whtte SN. Diametral and compressive strength of dental core materials. J Prosthet Dent 1999; 82:272-276.
9. Levartovsky S, Kuynnu E, Georgescu M, Goldstein GR. A comparison of the diametral tensile strength, the flexural strength, and the compressive strength of two new core materials to a silver alloy-reinforced glass-ionomer material. JProsthet Dent 1994; 72:481-485.
10. Kovarkk RE, Breeding LC, Caughman WF. Fatigue iffe of three core materials under simulated chewing conditions. J Prosthet Dent 1992 ;68:584-590.
11. Netti CA, Cunningham DE, Latta GH. Tensile strengths of composite core materials containing added colorants. J Prosthet Dent 1988 ;59:547-552.
12. Jordan RE, Suzuki M, Davidson DF. Cinnical evaluation of a universal dentin bonding resin: preserving dentition through new materials. J Am Dent Assoc 1993; 124:71-76.
13. Gateau P, Sabek M, Daley B. Fatigue testing and microscopic evaluation of post and core restorations under artfficial crowns. J Prosthet Dent 1999; 82:341-347.
22
Atatürk Üniv. Diş Hek. Fak. Derg.
Cilt:17, Sayı: 1, Yıl: 2007, Sayfa: 18-23
BAYINDIR, YILMAZ
14. Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent J 1972; 132:133-135.
15. Swartz ML, Phi/iips RW, Clark HE. Long-term F release from glass ionomer cements. J Dent Res 1984; 63:158-160.
16. Lacefield WR, Reindi MC, Retief DH. Tensile bond strength of a glass-ionomer cement. J Prosthet Dent 1985; 53:194-198.
17. Craig RG. Restorative dental materials. 7h ed. St Louis: CV Mosby; 1985:225-252.
18. Lloyd CH, Mitchell L. The fracture toughness of tooth coloured restorative materials. J Oral Rehab/I 1984; 11:257-72.
19. DeWald JP, Arcoria CJ, Ferracane JL. Evaluation of glass-cermet cores under cast crowns. Dent Mater 1990;6:129-132.
20. Arcoria CJ, DeWald JP, Moody CR, Ferracane JL. A comparative study of the bond strengths of amaggam and alloy-glass ionomer cores. J Oral Rehab/I 1989; 16:301-307.
21. Wilson AD. Resin-modified glass-ionomer cements. Int J Prosthodont 1990;3:425-429.
22. Mount GJ. Clinical placement of modern glass-ionomer cements. Quintessence Int 1993; 24:99¬107.
23. Duke ES. Advances in restorative core materials. Compend Contnn Educ Dent 2000; 21:976-978.
24. Craig RG, Powers JM. Restorative Dental Materials. 11th ed. St. Lois: Mosby: 2002: 248.
25. Piwowarczyk A, Ottl P, Lauer HC, Buchler A. Laboratory strength of glass ionomer cement, compomers, and resin composites. J Prosthodont 2002;11:86-91.
26. Irie M, Nakai H. Flexural properties and swelfnng after storage in water of po/yacfd-modfffed composite resin (compomer). Dent Mater J 1998; 17:77-82.
27. Momoi Y, Hrrosak K, Kohno A, McCabe JF.. Flexural properties of resnn-modfffed "hybrid" g/ass-ionomers in comparison with conventional acid-base glass-ionomers. Dent Mater J 1995; 14:109-119.

Thank you for copying data from http://www.arastirmax.com