You are here

Infrared and NMR Spectral Analyses and Computational Studies of 2-amino-3-methylbenzoic Acid

Journal Name:

Publication Year:

DOI: 
10.30516/bilgesci.393717
Author NameUniversity of Author
Abstract (2. Language): 
Detailed infrared spectrum in gas phase, NMR spectra analyses and theoretical studies of 2-amino-3-methylbenzoic acid were performed with DFT/B3LYP/6-311G+(2d,p) level of method in Gaussian 09W. Ground state molecular geometries of monomeric and dimeric structures were calculated in vacuum and compared to the experimental XRD results. Potential energy surface graphics of the proton transfer and torsional tautomerism process were obtained. Also, HOMA aromaticity chancing graphics were drowned in mentioned process. The IR band assignments and the decompositions of potential energy for each band were done using theoretical calculations. 1H and 13C NMR chemical shifts analyses were performed by using GIAO NMR calculations with SCRF solvent model.
74
82

REFERENCES

References: 

AIST, (2017). National Institute of Advanced Industrial Science and Technology Spectral Database for Organic Compounds, SDBS. http://sdbs.db.aist.go.jp/sdbs/ (Accessed on: 09.09.2017).
Albayrak Kaştaş, Ç., Kaştaş, G., Güder, A., Gür, M., Muğlu, H., Büyükgüngör, O. (2017). Investigation of two o -hydroxy Schiff bases in terms of prototropy and radical scavenging activity. Journal of Molecular Structure, 1130: 623–632.
Anderson, R.J., Bendell, D.J., Groundwater, P.W. (2004). Nuclear magnetic resonance spectroscopy. Abel, E.W. (Ed.) Organic Spectroscopic Analysis. Cambridge, England.
Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7): 5648.
Brown, G.M., Marsh, R.E. (1963). The crystal and molecular structure of 2-amino-3-methylbenzoic acid. Acta Crystallographica, 16(3): 191–202.
Cossi, M., Rega, N., Scalmani, G., Barone, V. (2003). Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry, 24(6): 669–681.
Dong, W., Xu, J., Xiong, L., Liu, X., Li, Z. (2009). Synthesis, structure and biological activities of some novel anthranilic acid esters containing N-Pyridylpyrazole. Chinese Journal of Chemistry, 27(3): 579–586.
Eryılmaz, S., Gül, M., İnkaya, E., İdil, Ö., Özdemir, N. (2016). Synthesis, crystal structure analysis, spectral characterization, quantum chemical calculations, antioxidant and antimicrobial activity of 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-
Bilge International Journal of Science and Technology Research 2018, 2(1): 74-82
81
methanobenzo[d]isoxazole. Journal of Molecular Structure, 1122: 219–233.
Fleisher, A.J., Morgan, P.J., Pratt, D.W. (2011). High-Resolution electronic spectroscopy studies of meta-aminobenzoic acid in the gas phase reveal the origins of its solvatochromic behavior. ChemPhysChem, 12(10): 1808–1815.
Forsyth, D.A., Sebag, A.B. (1997). Computed 13C NMR chemical shifts via empirically scaled GIAO shieldings and molecular mechanics geometries. Conformation and configuration from 13C shifts. Journal of the American Chemical Society, 119(40): 9483–9494
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. (2009). Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT.
Gardner, A.M., Wright, T.G. (2011). Consistent assignment of the vibrations of monosubstituted benzenes. Journal of Chemical Physics, 135(11): 1–18.
Gerber, T.I.A., Luzipo, D., Mayer, P. (2003). The Reaction of the cis -ReO2+ core with 2-amino-3-methylbenzoic acid. Journal of Coordination Chemistry, 56(18): 1549–1554.
Gichner, T., Voutsinas, G., Patrineli, A., Kappas, A., Plewa, M.J. (1994). Antimutagenicity of three isomers of aminobenzoic acid in Salmonella typhimurium. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 309(2): 201–210.
Jamróz, M.H. (2013). Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114: 220–230.
Kruszewski, J., Krygowski, T.M. (1972). Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Letters, 13(36): 3839–3842.
Krygowski, T.M. (1993). Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of pi-electron systems. Journal of Chemical Information and Modeling, 33(1): 70–78.
Linstrom, P.J., Mallard, W.G. (2001). NIST Chemistry webbook; NIST standard reference database No. 69. NIST Chemistry WebBook, (69): 20899.
Monte, M.J.S., Hillesheim, D.M. (2001). Thermodynamic study of the sublimation of six aminomethylbenzoic acids. The Journal of Chemical Thermodynamics, 33(7): 745–754.
Newman, M.S., Kannan, R. (1976). Reactions of 3-methylbenzyne with 2-substituted furans. Steric effects. The Journal of Organic Chemistry, 41(21): 3356–3359.
Öztürk, N., Gökçe, H. (2017). Structural and spectroscopic (FT-IR and NMR) analyses on (E)-pent-2-enoic acid. Bilge International Journal of Science and Technology Research, 1(1): 9–15.
Richards, M.R.E., Xing, D.K.L. (1995). The effect of p-aminobenzoic acid on the uptake of thymidine and uracil by Escherichia coli. International Journal of Pharmaceutics, 116(2): 217–221.
Samsonowicz, M., Hrynaszkiewicz, T., Świsłocka, R., Regulska, E., Lewandowski, W. (2005). Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. Journal of Molecular Structure, 744(2005): 345–352.
Syahrani, A., Ratnasari, E., Indrayanto, G., Wilkins, A. (1999). Biotransformation of o-and p-aminobenzoic acids and N-acetyl p-aminobenzoic acid by cell suspension
Bilge International Journal of Science and Technology Research 2018, 2(1): 74-82
82
cultures of Solanum. Phytochemistry, 51(5): 615–620.
Tomasi, J., Mennucci, B., Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8): 2999–3094.
Wang, Z., Chen, J., Li, L., Zhou, Z., Geng, Y., Sun, T. (2015). Detailed structural study of β-artemether: Density functional theory (DFT) calculations of Infrared, Raman spectroscopy, and vibrational circular dichroism. Journal of Molecular Structure, 1097: 61–68.
Wolinski, K., Hinton, J.F., Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23): 8251–8260.
Yıldırım, A.Ö., Yıldırım, M.H., Kaştaş, Ç.A. (2016). Studies on the synthesis, spectroscopic analysis and DFT calculations on (E) 4,6 dichloro 2 [(2 chlorophenylimino) methyl] 3 methoxyphenol as a novel Schiff’s base. Journal of Molecular Structure, 1113: 1–8.
Yıldırım, M.H., Paşaoğlu, H., Odabaşoğlu, H.Y., Odabaşoğlu, M., Yıldırım, A.Ö. (2015). Synthesis, structural and computational characterization of 2-amino-3,5-diiodobenzoic acid and 2-amino-3,5-dibromobenzoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 146: 50–60.

Thank you for copying data from http://www.arastirmax.com