You are here

On strongly deferred Cesaro summability and deferred statistical convergence of the sequences

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, it is shown that, if a sequence is strongly   deferred by the Cesaro summable for any  , 0    then it must be deferred by a statistically convergent and the inverse is also satisfied when the sequence is bounded.
FULL TEXT (PDF): 
22-25

REFERENCES

References: 

Agnew RP (1932). On deferred Cesaro Mean. Comm Ann
Math, 33, 413-421.
Armitage DH, Maddox IJ (1989) A new type of Cesaro
Mean. Analysis 9,195-204.
Buck RC (1953). Generalized asymptotic Density. Amer
Math Comm 75, 335-346.
Connor JS (1988). The statistical and strong p-Cesaro of
sequences. Analysis 847-63.
Connor JS (1989). On strong matrix summability with
respect to a modulus and statistical convergence. Can
Math Bull 32, 194-198.
Erdös P, Tenenbaum G (1989). Sur les densites de
certains suites d’entires. Proc London Math Soc 59,
417-438.
Fast H (1951). Sur la Convergence statistique. Colloq
Math 2241-244.
Freedman AR, Sember JJ, Raphael M (1978). Some Cesaro
type summability Spaces. Proc London Math Soc 37,
301-313.
Fridy JA (1985). On statistical convergence. Analysis 5,
301-313.
Fridy JA, Miller HI (1991). A matrix characterization of
statistical convergence. Analysis 11, 59-66.
Kucukaslan M, Yılmazturk M (2012). Deferred statistical
convergence. Kyungpook Math J (Submitted).
Maddox IJ (1967). Space of strongly summable functions.
Oxford 2, Quart J Math 345-355.
Maddox IJ (1970). Elements of Functional Analysis,
Cambridge at the University Press, 208 pp.
Mursaleen M (2000). λ-statistical convergence. Math
Slavaca 50, 111-115.
Nuray F (2010). λ-strongly summable and statistical
convergence, λ-statistical convergent functions. Int J
Sci Tech 34, 335-338.
Steinhous H (1951). Sur la convergence ordinaire et la
convergence asymtotique. Colloq Math 2, 73-74.
Schoenberg IJ (1959). The integrability of certain
functions and related summability methods. Amer
Math Monthly 66, 361-375.
Steinhaus H (1951). Sur la convergence ordinaire et la
convergence asymptotique, Colloq. Math., 273-74.
Osikiewicz JA (1997). Summability of Matrix submethods
and spliced sequences. PhD. Thesis, August, 90 pp.
Zygmund A (1979). Trigonometric Series, Cambridge
Univ Press, UK.

Thank you for copying data from http://www.arastirmax.com