You are here

Entropy of Intuitionistic Fuzzy-Dynamical Systems on MV-algebras

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
In this paper, intuitionistic fuzzy-dynamical systems (IF-dynamical systems) on an MV-algebra are introduced. Also the entropy of IF-dynamical systems is introduced and studied. Several related results are proved.
16
30

REFERENCES

References: 

[1] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica Verlag, New York, (1999).
[2] K. Atanassov, Intuitionistic Fuzzy Sets, VII ITKR’s Session, Sofia, (1983).
[3] M. Durica, Entropy on IF-events, NIFS. 13, (2007), 30-40.
[4] M. Ebrahimi, B. Mosapour, The concept of entropy on D-posets, Cankaya University Journal of Science and
Engineering, 10, (2013), 137-151.
[5] M. Ebrahimi, U. Mohammadi, R. Ghasemkhani, On the entropy of dynamical systems on s -MV-algebras with
state, Journal of Applied Environmental and Biological Sciences, 5, (2015), 229-234,
[6] P. A. Ejegwa, A. J. Akubo, O. M. Joshua, Intuitionistic fuzzy set and its application in career determination via
normalized euclidean distance method, European Scientific Journal, 10, (2014), 529-536.
[7] P. A. Ejegwa, S. O. Akowe, P. M. Otene, J. M. Ikyule, An overview on intuitionistic fuzzy sets, International
Journal of Scientific and Technology Research, 3, (2014), 142-145.
[8] K. Lendelova, IF-probability on MV-algebras, In Notes on Intuitionistic Fuzzy Sets, 11, (2005), 66-72.
[9] K. Lendelova, J. Petrovicova, Representation of IF-probability on MV-algebras, Soft Computing. 10, (2006), 564-
566.
30 B. Mosapour
[10] D. Mundici, Interpretation of AFC∗-algebras in Lukasiewicz sentential calculus, Journal of Functional Analysis,
65, (1986), 15-63.
[11] D. Markechova, The entropy of complete fuzzy partitions, Math. Slovaca, 43, (1993), 1-10.
[12] T. Neubrunn, B. Riecan, Measure and Integral, Veda, Bratislava in Slovak (1981).
[13] J. Petrovicova, On the entropy of dynamical systems in productMV-algebras, Fuzzy Sets and Systems, 121, (2001),
347-351.
[14] J. Petrovicova, On the entropy of partitions in product MV algebras, Soft Computing, 4, (2000), 41-44.
[15] M. Rencova, A generalization of probability theory on MV-algebra to IF-events, Fuzzy Sets and Systems, 161,
(2010), 1726-1739.
[16] B. Riecan, Kolmogorov-Sinaj entropy on MV-algebras, Int. J. Theor. Phys , 44, (2005), 1041-1052.
[17] P.Walters, An Introduction to Ergodic Theory, Springer Verlag, (1982).
[18] L. A. Zadeh, Fuzzy sets, Inform and Control, 8, (1965), 338-353.

Thank you for copying data from http://www.arastirmax.com