You are here

Theoretical Investigations on Thermo-Dynamic Properties and Molecular Structure of the Phosphorus-Containing Derivative of Chromone

Journal Name:

Publication Year:

Abstract (2. Language): 
The possible tautomeric forms of 3-(1-amino-ethylidene)-2methoxy-2-oxo-2,3-dihydro-2A5-benzo[e][1,2]oxaphosphinin-4-one molecule were searched by utilizing Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The computed bond lenğths and bond anğles were compared with the experimental data. The structure, enerğies and relative stability of tautomers were compared and analyzed. The amine-keto and imino-enol tautomerism was taken into account to rationalize the difference in reactivity between the two forms. The keto form was found to be more stable than the enol form. The acidity constant and physicochemical parameters were computed by semi-empirical methods.
Abstract (Original Language): 
3-(1-Amino-etilidin)-2metoksi-2-okzo-2,3 -dimdro-2A5-benzo[e][1,2]okzafosfonin-4-on olası tautomerik formları Hartree-Fock (HF) ve Yoğunluk Fonksiyonel teorisi (DFT) metodları kullanılarak arastırıldı. Hesaplanan bağ uzunlukları ve bağ acıları deneysel verilerle kıyaslandı. Tautomerlerin yapıları, enerjileri ve relatif kararlıkları karsılastırıldı ve analiz edildi. Amin-keto ve imin-enol tautomerizmi, iki form arasındaki reaktivite farkını oranlamak itin dikkate alındı. Keto formunun enol formundan daha kararlı olduğu gözlendi. Asitlik sabiti ve fizikokimyasal parametreler yarı-deneysel metodlarla hesaplandı.
1-16

REFERENCES

References: 

[1] A. M. Magill and B. F. Yates, An assessment of theoretical protocols for calculation of the pKa values of the prototype imidazolium cation, Aust. J. Chem. 57 (2004), 1205-1210.
[2] K. J. Cavell, A. M. Magill, and B. F. Yates, Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents-theoretical predictions, J. Am. Chem. Soc. 126 (2004), 8717-8274.
[3] Y. Fu, L. Liu, H.-Z. Yu, Y. Wang, and Q.-X. Guo, Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile, J. Am.
Chem. Soc. 127 (2005), 7227-7234.
[4] A. M. Toth, M. D. Liptak, D. L. Philips, and G. C. Shields, Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods, J. Chem. Phys. 114 (2001), 4595-4606.
[5] C. O. Silva, E. C. da Silva, and M. A. C. Nascimento, Ab initio calculations of absolute pKa values in aqueous solution II. Aliphatic alcohols, thiols, and halogenated carboxylic acids, J.
Phys. Chem. A 104 (2000), 2402-2409.
[6] E. Budzisz, Synthesis, reactions and biological activity of phosphorus-containing derivatives
of chromone and coumarin, Phosphor Sulfur Silicon 179 (2004), 2131-2147. [7] E. Budzisz, Wlasciwosci biologiczne fosfonianowych pochodnych chromonu i kumaryny,
Farmacja Polska 59 (2003), 677-683.
[8] E. Budzisz, J. Graczyk-Wojciechowska, R. Zieba, and B. Nawrot, A new series of 2-substituted 3-phosphonic derivatives of chromone. Part II. Synthesis, in vitro alkylating and in vivo anti-
tumor activity, New J. Chem 26 (2002), 1799-1804.
[9] R. Deng, J. Wu, and L. Long, Lanthanide complexes of bis(4-hydroxy-3-coumarinyl) acetic acid and their anticoagulant action, Bul. Soc. Chim. Belg. 101 (1992), 439-443. [10] I. Kostova, I. Manolov, S. Konstantinov, and M. Karaivanova, Synthesis, physicochemi-cal characterisation and cytotoxic screening of new complexes of cerium, lanthanum and neodymium with warfarin and coumachlor sodium salts, Eur. J. Med. Chem. 34 (1999), 63-68.
ÇUJSE
7
(2010), No. 1
15
[11] I. Manolov, I. Kostova, T. Netzeva, S. Konstantinov, and M. Karaivanova, Cytotoxic activity
of cerium complexes with coumarin derivatives. Molecular modeling of the ligands, Arch.
Pharm. Pharm. Med. Chem. 333 (2000), 93-98. [12] I. Kostova, I. Manolov, and M. Karaivanova, Synthesis, physicochemical characterization, and
cytotoxic screening of new zirconium complexes with coumarin derivatives, Archiv. Pharm.
Pharm. Med. Chem. 334 (2001), 157-162. [13] V. D. Karaivanova, I. Manolov, M. L. Minassyan, N. D. Danchev, and S. M. Samurova, Metal
complexes of warfarin sodium, Pharmazie. 49 (1994), 856-857. [14] E. Budzisz, B. K. Keppler, G. Giester, M. Wozniczka, A. Kufelnicki, and B. Nawrot, Synthesis,
crystal structure and cytotoxicity of novel palladium (II) complex with coumarin derived
ligand, Eur. J. Inorg. Chem. 2004 (2004), 4412-4419. [15] E. Budzisz, U. Krajewska, and M. Rozalska, Cytotoxic and proapoptotic effects of new Pd(II)
and Pt(II)-complexes with 3-ethanimidoyl-2-methoxy-2H-1,2-benzoxaphosphinin-4-ol-2-oxide,
Pol. J. Pharmacol. 56 (2004), 473-478. [16] E. Budzisz and S. Pastuszko, Reaction of dimethyl 2-methyl- and dimethyl 2 phenyl-4-oxo-
4H-chromen-3-yl-phosphonate with amines, Tetrahedron 55 (1999), 4815-4824. [17] H. Kolancılar, C. Karapire, U. Oyman, and S. Idi, Fluorescence emission and photooxida-
tion studies with 5,6- and 6,7-benzocoumarins and a 5,6-benzochromone under direct and
concentrated sun light, J. Photochem. Photobiol A: Chem. 153 (2002), 173-184. [18] E. Budzisz, M. Malecka, M. Wozniczka, and A. Kufelnicki, Crystal Structure, protolytic
properties and alkylating activity of 5-A3-(1-amino-ethylidene)-2-methoxy-2-oxo-2,3-dihydro-2
benzo[e][1,2]oxaphosphinin-4-one, J. Mol. Struct. 753 (2005), 113-118. [19] C. (Öğretir, C. Yenikaya, and H. Berber, A quantum chemical study on structure of 1,2-
bis(diphenylphosphinoyl)ethane and phenol cocrystal, J. Mol. Struct.: THEOCHEM 686
(2004), 153-157.
[20] C. Oüğgretir, C. Yenikaya, and H. Berber, A quantum chemical study on structure of 1,2-Bis(diphenylphosphinoyl)ethane and hydroquinone cocrystal, J. Mol. Struct.: THEOCHEM
725 (2005), 207-214.
[21] CAChe WorkSystem Pro, Version 6.1.12, FCS Inc., 15244 NW Greenbrier Parkway, Beaverton,
Oregon, 2004.
[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T.
Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B.
16
Sıdır et al.
Johnson,
W
. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Gaussian, Inc.,
Pittsburgh, PA, 2003.
[23] J. B. Foreseman and 7E. Frisch, Exploring chemistry with electronic structure methods, 2. ed.,
Gaussian Inc., Pitssburgh 1996. [24] I. Georgieva, T. Mihaylov, G. Bauer, and N. Trendafilova, Effect of the nature of mendiaxon
- — X+ interactions (X+ = Na+, Cu+, H+) and the hydrogen bonding on the v(C = O)
behavior: theoretical and spectroscopic study, Chemical Physics 300 (2004), 119-131. [25] D. D. Perrin, Dissociation constants of organic bases in aqueous solution, first supplement,
Pergamon, Oxford, 1972.

Thank you for copying data from http://www.arastirmax.com