[1]
J
. Dübois-Laçoste, M. Lopez-Ibanez, and T. Stützle, A hybrid TP+PLS algorithm for bi-
objeçtive
flow-shop
sçhedüling
problems
, Computers & Operations Research, artiçle in press,
doi:10.1016/j.cor.2010.10.008
[2
] B. S. H. Khan, G. Prabhaharan, and P. Asokan, A grasp algorithm for m-maçhine flowshop
sçhedüling problem with biçriteria of makespan and maxirrmm tardiness, International Journal
of Computer Mathematics 84 (2007), 1731-1741. [3] S. Sayin and S. Karabatı, A biçriteria approaçh to the two-maçhine flow shop sçhedüling
problem, European Journal of Operational Research 113 (1999), 435-449. [4] B. Toktas, M. Azizoğlü, and S. Koksalan, Two-maçhine flow shop sçhedüling with two çriteria:
Maxirrmm earliness and makespan, European Journal of Operational Research 157 (2004),
286-295.
[5] C. J. Liao, W.C. Yü, and C.B. Joe, Biçriterion sçhedüling in the two-maçhine flowshop, The
Journal of the Operational Research Society 48 (1997), 929-935. [6] R. L. Daniels and R. J. Chambers, Mülti-objeçtive flow-shop sçhedüling, Naval Research
Logistics 37 (1990), 981-995.
[7] K. Chakravarthy and C. Rajendran, A heüristiç for sçhedüling in a flowshop with the biçriteria of makespan and maximüm tardiness minimization, Production Planning and Control 10 (1999), 707-714.
[8] D. Ravindran, A. Noorül Haq, S. J. Selvaküar, and R. Sivaraman, Flow shop sçhedüling with mülti objeçtive of minimizing makespan and total flow time, International Journal of Advanced Manufacturing Technology 25 (2005), 1007-1012. [9] T. Pasüpathy, C. Rajendran, and R. K. Süresh, A mülti-objeçtive genetiç algorithm for sçhedüling in flow shops to minimize the makespan and total flow time of jobs, International Journal of Advanced Manufacturing Technology 27 (2006), 804-815.
[10]
T
. Loükil, J. Teghem, and D. Tüyttens, Solving mülti-objeçtive prodüçtion sçhedüling problems üsing metaheüristiçs, European Journal of Operational Research 161 (2005), 42-61.
[11] T. Mürata, H. Ishibüçhi, and H. Tanaka, Mülti-objeçtive genetiç algorithms and its appliça-tions to flowshop sçhedüling, Computers and Industrial Engineering 30 (1996), 957-968.
ÇUJSE
7
(2010), No. 2
153
[12]
S
. G. Ponnambalam, H. Jagannathan, M. Kataria, and A. Gadiçherla, A TSP-GA mülti-objeçtive algorithm for flowshop sçhedüling, International Journal of Advanced Manufacturing Technology 23 (2004), 909-915.
[13] T. K. Varadharajan and C. Rajendran, A mülti-objeçtive simülated-annealing algorithm for sçhedüling in flowshops to minimize the makespan and total flowtime of jobs, European Journal of Operational Research 167 (2005), 772-795.
[14] B. Yagmahan and M. M. Yenisey, A mülti-objeçtive ant çolony system algorithm for flow shop sçhedüling problem, Expert Systems with Applications 37 (2010), 1361-1368.
[15] J. E. C. Arroyo and V. A. Armentano, Genetiç loçal searçh for mülti-objeçtive flowshop sçhedüling problems, European Journal of Operational Research 167 (2005), 717-738.
[16] A. R. Rahimi-Vahed and S. M. Mirghorbani, A mülti-objeçtive partiçle swarm for a flow shop sçhedüling problem, Journal of Combinatorial Optimization 13 (2007), 79-102.
[17] A. R. Rahimi-Vahed and A. H. Mirzaei, Solving a bi-çriteria permütation flow-shop problem üsing shüffled frog-leaping algorithm, Soft Computing 12 (2008), 435-452.
[18] R. Tavakkoli-Moghaddam, A. R. Rahimi-Vahed, and A. H. Mirzaei, A hybrid mülti-objeçtive immüne algorithm for a flow shop sçhedüling problem with bi-objeçtives: Weighted mean çompletion time and weighted mean tardiness, Information Sciences 177 (2007), 5072-5090.
[19] A.R. Rahimi-Vahed, B. Javadi, M. Rabbani, and R. Tavakkoli-Moghaddam, A mülti-objeçtive sçatter searçh for a bi-çriteria no-wait flow shop sçhedüling problem, Engineering Optimization 40 (2008), 331-346.
[20] R. Tavakkoli-Moghaddam, A. R. Rahimi-Vahed, and A. H. Mirzaei, Solving a mülti-objeçtive no-wait flow shop sçhedüling problem with an immüne algorithm, International Journal of Advanced Manufacturing Technology 36 (2008), 969-981.
[21] E. Rashidi, M. Jahandar, and M. Zandieh, An improved hybrid mülti-objeçtive parallel genetiç algorithm for hybrid flow shop sçhedüling with ünrelated parallel maçhines, International Journal of Advanced Manufacturing Technology 49 (2010), 1129-1139.
[22] K. Deb, Multi-Objective optimization using Evolutionary Algorithms, John Wiley & Sons, Chiçhester, 2004.
[23] J. L. Cohon, Multiobjective Programming and Planning, Dover Pübliçations, Mineola, New
York, 2003.
[24] M. Nawaz, J. E. Ensçore, and I. Ham, A heüristiç algorithm for the m-maçhine, n-job flowshop
seqüençing
problem
, OMEGA 11 (1983), 91-95. [25] C. Rajendran, Heüristiç algorithm for sçhedüling in a flowshop to minimize total flowtime,
International Journal of Production Economics 29 (1993), 65-73
Thank you for copying data from http://www.arastirmax.com