You are here

Parmak Hareketlerinin Bilgisayarlı Yorumlanmasıyla Tek Oktavlı Notaların Seslendirilmesi (Seri B)

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of Author
Abstract (2. Language): 
In this paper, the task of synthesizing virtual music without adopting any musical instruments has been accomplished by detecting the changes in hand position with the help of computer vision techniques. The melody of one octave has been studied taking the possible diversities in the number of fingers into consideration. Vocalizing proper notes corresponding to the current hand position has been carried out through computerized interpretation of finger motions on a hand image recorded by a video camera. Finger positions have been determined by preprocessing the input hand image. Feature vector has been composed of the distances from hand's center of gravity to finger tips. As a result, the feasibility of real-time computerized synthesis of virtual music has been demonstrated by evaluating the finger motions without the need for heavy musical instruments such as piano.
Abstract (Original Language): 
(Çalışmada çalgı aleti kullanılmadan, bilgisayarlı görü yardımıyla el durumunun (parmakların) değişimi algılanarak sanal müzik çalınması incelenmektedir. Parmak sayısının oluşturabileceği çesitlilikler göz önünde bulundurularak sesin notaya dayalı melodisi üzerinde durulmustur. Kamera yardımıyla alınan el görüntüsündeki parmak hareketleri bilgisayarda yorumlanarak uygun notaların seslendirilmesi sağlanmıstır. Özellik vektörü olarak el yapısının agırlık merkezine güre parmak uçlarına olan uzaklıkların degerlendi-rilmesi gerçeklestirilmistir. Boylelikle parmak hareketleri yorumlanarak piyano gibi agır aletleri tasımadan bilgisayarda gerçek zamanlı müzik seslendirilmesinin mumkünluğu güs-terilmiçstir.

REFERENCES

References: 

[1] F. Rossant, A global method for music symbol recognition in typeset music sheets, Pattern
Recognition Letters 23 (2002), 1129{1141.
[2] C. Nolker and H. Ritter, Visual recognition of continuous hand postures, IEEE Transactions
on Neural Networks 13 (2002), 983{994.
198 Nabiyev
[3] D. O. Gorodnichy and A. Yogeswaran, Detection and tracking of pianist hands and ngers,
Proceedings of the Third Canadian Conference on Computer & Robot Vision (CRV'06)
Quebec, Canada, June 7-9, 2006.
[4] Y. Bulatov, S. Jambawalikar, P. Kumar and Saurabh Sethia, Hand recognition using geometric
classiers, Proceedings of the First International Conference on Biometric Authentication
(ICBA 2004), Hong Kong, China, July 15-17, 753{759.
[5] Y. Wu and T. S. Huang, Hand modeling, analysis, and recognition: For vision-based human
computer interaction, IEEE Signal Processing Magazine 18 (2001), 51{60.
[6] Ra L. N. Wong and P. Shi, Peg-free hand geometry recognition using hierarchical geometry
and shape matching, Proceedings of the IAPR Workshop on Machine Vision Applications
(2002) 281{284.
[7] E. Yoruk, E. Konukoglu, B. Sankur, and J. Darbon, Shape-based hand recognition, IEEE
Transactions on Image Processing 15 (2006), 1803{1815.
[8] V. V. Nabiyev, Yapay Zeka: Problemler, Yontemler, Algoritmalar, Seckin Yaynclk 2005.
[9] V. V. Nabiyev , C. Kose, and S. Bayrak, An articial neural network approach for sign language
vowels recognition, The International Scientic Conference of Problems of Cybernetics and
Informatics, Baku, Azerbaijan, 24-26 October 2006.
[10] M'lou Dietzer, First Impressions: An Intermediate Piano Method, Alfred Music Publishing
2007.
[11] W. K. Pratt, Digital Image Processing, John Wiley & Sons, New York 1991.
[12] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on
Systems, Man and Cybernetics 9 (1979), 62{66.

Thank you for copying data from http://www.arastirmax.com