You are here

Diferansiyel Dönüşüm Yöntemi (Seri B) tarafından Coullet Sistemi Çözme üzerinde

On Solving Coullet System by Differential Transformation Method (Series B)

Journal Name:

Publication Year:

Abstract (2. Language): 
The differential transformation method is employed to solve a system of nonlinear differential equations, namely Coullet system. Numerical results are compared to those obtained by the fourth-order Runge-Kutta method to illustrate the preçiseness and effectiveness of the proposed method. It is shown that the proposed method is robust, accurate and easy to apply.
Abstract (Original Language): 
Coullet sistemi olarak bilinen nonlineer denklem sisteminin çözümü diferensiyel dönüşüm yöntemi ile elde edildi. Sayısal sonuçlar, önerilen yöntemin etkinliğini ve doğruluğunu göstermek için dürdüncü mertebeden Runge-Kutta yöntemi ile karsılastırıldı. Önerilen yöntemin güçlü, doğru ve kolayca uygulanabilirliği gösterildi.
111-121

REFERENCES

References: 

[1] J. K. Zhou, Differential Transformation and its Applications for Electrical Circuits (In Chinese), Huazhong University Press, Wuhan, China 1986.
[2] V. S. Ertürk, Differential transformation method for solving differential equations of Lane-Emden type, Mathematical and Computational Applications 12 (2007), 135-139.
[3] V. S. Ertürk, Solution of linear twelfth-order boundary value problems by using differential transform method, International Journal of Applied Mathematics & Statistics 13(M08)
(2008) , 57-63.
[4] S.-H. Chang and I.-L. Chang, A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Applied Mathematics and Computation 195 (2008), 799¬808.
[5] H. Demir and I. CC. Süngü, Numerical solution of a class of nonlinear Emden-Fowler equations by using differential transform method, (Çankaya Üniversitesi Journal of Arts and Sciences 12
(2009) , 75-81.
[6] M. Merdan and A. Gökdogan, Solution of nonlinear oscillators with fractional nonlinearities
by using the modified differential transformation method, Mathematical and Computational
Applications 16 (2011), 761-772. [7] I. Hashim, M. S. M. Noorani, R. Ahmad, S. A. Bakar, E. S. Ismail and A. M. Zakaria,
Accuracy of the Adomian decomposition method applied to the Lorenz system, Chaos, Solitons
& Fractals 28 (2006), 1149-1158. [8] A. Arneodo, P. Coullet and C. Tresser, Possible new strange attractors with spiral structure,
Communications in Mathematical Physics 79 (1981), 573-579.
ÇUJSE
8
(2011), No. 1
121
[9] P. Coullet, C. Tresser and A. Arneodo, Transition to stochasticity for a class of forced oscil¬lators, Physics Letters A 72 (1979), 268-270.
[10] J.-B. Hu, Y. Han and L.-D. Zhao, Synchronization in the Genesio Tesi and Coullet systems using the backstepping approach, Journal of Physics: Conference Series 96 (2008), 012150.
[11] X. Shi and Z. Wang, Adaptive synchronization of Coullet systems with mismatched parameters based on feedback controllers, International Journal of Nonlinear Science 8 (2009), 201-205.
[12] J. Ghasemi, A. Ranjbar N. and A. Afzalian, Synchronization in the Genesio-Tesi and Coullet systems using the sliding mode control, International Journal of Engineering 4 (2010), 60-65.
[13] L. Yang-Zheng and F. Shu-Min, Synchronization in the Genesio-Tesi and Coullet systems with nonlinear feedback controlling, Acta Physica Sinica (Chinese Edition) 54 (2005), 3490-3495

Thank you for copying data from http://www.arastirmax.com