You are here

DÜZENSİZ NAZOFARENKS ALANLARINA KOBALT-60 İLE RADYOTERAPİ UYGULAMALARINDA KORUMA BLOKLARININ DOZ PARAMETRELERİNE ETKİSİ

Journal Name:

Publication Year:

Abstract (2. Language): 
Shielding blocks for protection of vital organs within a radiation field give rise to changes in dose distribution of open field due to decreasing of scattered radiation from the shielded areas. Several methods have been used to calculate depth dose values for irregular fields. However, validity of such methods should be verified before routine use in clinic. Design.- In this study, measured percentage depth doses for selected irregular fields have been compared with percentage depth dose for fields obtained using equivalent squares (negative field) and [4x(A/P)] techniques. Dose rates for blocked and unblocked fields have been measured. Also, dose profiles for open fields at 0.5 cm and blocked fields for three depths–0.5, 5 and 10 cm depth – have been obtained and the effect of blocking on dose profile for open field has been investigated. Results.- When measured percentage DD for the selected fields were compared with percentage DD for equivalent squares technique, the percentage difference was found 0.20 %-2.34 % in the nasopharyngeal fields since the block edge was close to central axis. When measured percentage DDs were compared with percentage DD for [4x (A/P)] technique, the percentage difference was found 0. 20 %-2.34 % for the nasopharygeal fields. But both techniques were convenient for percentage DD except points at block edge. When out-put values for selected blocked fields were compared with those of open fields, if blocked fields were less than 25 %, out-put of open fields could be used for irregular fields. Since blocks were close to center of the fields in cranial fields outputs were found to have 2%-3% difference from outputs of open fields. Conclusion.- The dose under the block for selected field was about 10 % of dose at d max.
Abstract (Original Language): 
Radyoterapide kritik organların korunmas ı amacıyla radyasyon alanı içine konulan bloklar, korunmuş volümden radyasyon saçılmasını azaltarak, açık alanın doz dağılımlarının değişmesine neden olurlar. Düzensiz alanların derin doz yüzde değerlerinin bulunmasına ilişkin çeşitli metodlar geliştirilmiştir. Rutinde kullanı- lan bu metodların ölçümlerle geçerliliğinin incelenmesi gereklidir. Bu çalışmada çeşitli düzensiz alanların ölçülen derin doz yüzde değerleri, kare eşdeğeri (KE-negatif alan ) ve [4x(A/P)] yöntemiyle bulunan alanların derin doz yüzde değerleri ile karşılaştırılmış, bloklu ve a- çık alan doz verimleri ölçülmüştür. Ayrıca üç derinlikte (0.5,5 ve 10 cm derinlikler için) açık ve bloklu alanların doz profilleri çizdirilmiş ve bloklamanın açık alan doz profiline olan etkisi incelenmiştir. Seçilen düzensiz alanlarda yapılan derin doz yüzde değerleri ile yoğun bloklamanın yapıldığı ve ikinci boost alanı olan nazofarenks (faz-III) alanında ise KE yöntemi, [4x(A/P)] ‘ ye göre daha iyi sonuç vermiştir (% 2.34 ve % 0.35). Ancak, her iki hesaplama yöntemi de blok kenarındaki noktalar hariç derin doz yüzde değerleri için uygundur. Her kliniğin kendi hesaplama yöntemini kendi koşullarında belirmesi uygun olacaktır. Seçilen bloklu alanlar ile açık alanların doz verimleri mukayese edildiğinde bloklamanın % 25’den az olduğu vakalarda açık alan (kolimatör) doz veriminin kullanılabileceği görülmüştür. Ancak, bloklamanın ve blokların merkeze yakın olduğu nazofarenks (III) alanında doz verimi, açık alan doz verimine göre % 2 - % 3 arasında farklıdır. Bu çalışmada kullan ılan alanlarda blok altındaki dozlar, tüm alanlar için dmax’ın % 10’u civarındadır.
7-15

REFERENCES

References: 

1. IAEA Absorbe dose determination in photon
and electron beam. An International Code of
Practica Technical Reports Series, Vienna,
1987; No: 277.
2. ICRU 23 Measurement of absorbed dose in a
phantom irradiated by a single beam of X or
gamma rays, 1973.
3. Perez CA. External beam dosimetry and treatment
planing in principle and practice of radiation
oncology. JB Lippincott, 1987; 208-239.
4. Quast U, Glaeser L. Irregular field dose determination
with the weighted beam-zone method.
Int J Radiat Oncol Biol Phys 1982; 8: 1637-
1645.
5. Agarwall SK, Wakley J, Scheele RV, Normansell
A. A method of dosimetry for irregularly
shaped fields. Int Radiat Oncol Biol Phys
1977; 2: 199-203.
6. Anderson R, D’angio GJ, Khan FM. Dosimetry
of irregularly shaped radiation therapy fields.
Radiol 1969; 2: 1092-1100.
7. Aral IM, Cail D, Nissel M, Spira J. Dosimetry
of İrregularl fields in cobalt 60 therapy. Acta
Radiol Ther Phys Biol 1970; 9: 24-32.
8. Bilge H, Tekin M, Hamidkhou N. Kobalt 60 ile
yapılan çalışmalarda düzensiz radyasyon
alanlarının merkezi eksenlerinde % derin doz
tayinleri. Türk Onkol Derg 1995; 10: 35-38.
9. Brown LH, Swensson GK, Bjarngard BE. Day’s
integration of scatter dose with an analytical
expression. Med Phys 1981; 8: 184-189.
10. Bukowitz AG. Computer calculation of dose for
irregularly shaped field for Co-60 and 6 MV
photons. Radiol 1974; 113: 181-185.
11. Khan FM. Computer dosimetry of partially
blocked fields in cobalt teletherapy. Radiol
1970; 97: 405-411.
12. Khan FM. Dosimetry of irregularly shaped
fields in Levitt and Tapley’s Technological Ba-
sis of Radiation Therapy; Practical Clinical Applications
SM Levitt, FM Khan, RA Potish. Lea
and Febiger, 1992; 73-79.
13. Page V, Gardner A, Karzmark CJ. Physical and
dosimetric aspects of the radiotherapy of malignant
lymphomas. Radiol 1970; 96: 619-626.
14. ICRU 24. Determination of absorbed dose in a
patient irradiated by beams of X or gamma
rays in radiotherapy procedures, 1976.
15. Clarkson JR. A note on depth doses in fields of
irregular shape. Brit J Radiol 1941; 14: 265-
268.
16. Jhons HE, Cunningham JR. Equivalent
squares and circles for rectangular and irregular
fields in the physics of radiology. 4. edition,
Illinois, Charles C Thomas, Sprinfield, 1983;
356-358.
17. Wrede D, Tai D, Edwards F, Coffey C, Schroader
K. An intercomparison between two methods
of obtaining percentage depth doses for irregular
shaped fields and comparison of each
method with experimental data for Co-60 and
10 MV X-rays. Brit J Radiol 1979; 52: 398-404.
18. Davis JB, Reiner B. Depth dose under narrow
shielding blocks: a comparison of measure and
calculated dose. Radiother Oncol 1995; 34: 219-
227.
19. Fontenla DP, Kutcher GJ, Losasso TJ. Simulating
blocks in treatment planing calculations.
Int Radiat Oncol Biol Phys 1989; 16: 867-873.
20. Shahabi S. Irregularly Shaped Fields. Blackburn
’s Introduction to Clinical Radiation Therapy
Physics, Medical Physics Wisconsin, 1989;
141-152.
21. Tachter M, Bjarngard BE. Equivalent squares
of irregular photon fields. Med Phys 1993; 20:
1229-1232.
22. British Journal of Radiology Supplement
No:17; Central axis depth dose data in radiotherapy,
Published by The British Institute of
Radiology London, 1983.
23. Meurk ML, Green JP, Nussbaum H, Vaeth JM.
Phantom dosimetry study of shaped Co-60
fields in the treatment of Hodgkin’s disease.
Radiol 1968; 91: 554-558.

Thank you for copying data from http://www.arastirmax.com