You are here

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
It is inevitable to use radiation in many fields of the life at present and in future. In this respect, monitoring of the radiation has a big importance to keep of the harmful effects of radiation for human being and his future. For this purpose biological dosimeter has been used for nearly 30 years and shows improvements at the parallel of the increasing scientific developments. In this work, past and present situation of using of biological materials and cytogenetic techniques for the determination of the absorbed radiation dose were discussed. Also, especially the reasons and results of using of chromosome aberrations in the biological dosimeter have been summarized with the investigation of published papers about this subject.
Abstract (Original Language): 
Günümüzde ve gelecekte hayatın birçok alanında radyasyonun kullanımı kaçınılmazdır. İnsanın radyasyonun zararlı etkilerinden korunmasında radyasyonun izlenmesi (monitoring) önemlidir. Bu amaçla biyolojik dozimetri yaklaşık 30 yıldır kullanılmakta ve bilimsel ilerlemelere paralel gelişmeler göstermektedir. Bu çalışmada; absorbe edilen radyasyon dozunun belirlenmesi amacıyla kullanılan biyolojik materyallerin ve sitogenetik tekniklerin bugünkü durumu ve geçmişi tartışılmış, ayrıca biyolojik dozimetride özellikle kromozom aberasyonlarının kullanılışının neden ve sonuçları, konu ile ilgili yayınlanmış çalışmalar incelenerek özetlenmiştir.

REFERENCES

References: 

1. IAEA-VIENNA, Biological Dosimetry: Chromosomal
Aberration for Dose Assessment. Technical Report.
No.260. International Atomic Energy, Vienna, 1986.
2. Bauchinger M. Quantification of Low-Level Radiation
Exposure by Conventional Chromosome Aberration
Anaysis. Mutat. Res. 1995; 339:177-89.
3. AAPM Report No.18, A primer on low-level ionizing
radiation and its biological effects. 1986; 43-44.
4. Hall, E J., Radiobiology for the Radiobiologist. 3
rd.edition, J.B. Lippin Cott Company, Philadelphia, 1998.
5. Coggle J.E. Biological Effects Of Radiation, London,
Wykeham Publications (London) l td; 1971; 81-86.
6. Hornec, G. Biological Monitoring of Radiation
ExposureAdv. Space Res. 1998; 22: 1631-1641.
7. Müller W.U. and Streffer C.,Biological indicators for
radiation damage. Int. J. Radiat. Biol. 1991; 59: 863-873.
8. Candervall B, Persson L; Polischouk A. Perspective an
biological dosimetry from the aspect of individual
radiosensitivity: the context of DNA double-strond
breaks and chromosomal aberrations. Applied Radiation
and Isotopes. 2000; 52 :1117-1120.
9. Ronald A.H, Solly E.S, Eric R.R. Medical Managment of
Three Warkers Following a Radiaiton Exposure Incident.
American Journal of Industrial Meidicne. 1992; 22: 249-
257.
10. Wald N. Biomedical Radionale for Cytogenetic
Dosimetry. J. Radiat. Res. 1992; 33: 31-43.
11. Scheid. W, Weber J, Traut H. Biological an physical
dosimetry after chronic accupational exposure to ionizing
radiation: A Comparative Study. Studia biophysica. 1990;
38: 205-212.
12. Lloyd D.C. Biological Dosimetry in Radiological
Protection: Recent Developments J. Soc. Prot. 1984; 4:
216-230.
13. Wolf, S Biological dosimetry with cytogenetic endpoints.
Progress in clinical and Biological Research. 1991; 372:
351-362.
14. Zoetelief J. and Broerse J J. Dosimetry for Radiation
Accidents: Present Status and Prospects for Biological
Dosimeters. Int. J. Radiat. Biol. 1990; 57: 737-750.
15. Müller, H.J. Artificial Transmutation of the Gene,
Science : 84-87,1927.
16. Bauchinger M. Cytogenetic Research after Accidental
Radiation Exposure. Stem Cells. 1995; 13:182-90.
17. Ramalho A T. Costa M L. and Oliveira M S.
Convectional Radiation-Biological Dosimetry Using
Frequencies of Unstable Chromosome Aberrations.
Mutat. Res. 1998; 404: 97-100.
18. Sasaki M S. Use of Lymphocyte Chromosome
Aberrations in Biological Dosimetry: Possibilities and
Limitations. In: İ shı hara, T. and Sasaki, M.S., eds.
Radiation-İnduced Chromosome Damage in Man. New
York: Alan R. Liss. 1983; 585-604.
19. Hoffmann W., Schmitz-Feuerhake I.,How radiationspecific
is the dicentric assay? Journal of Exposure
Analysis and Environmental Epidemiology. 1999; 9:
113-133.
20. Lloyd D.C, Edwards A A, Chromosome Aberrations in
Human Lymphocytes: Effect of Radiation Quality, Dose
and Dose Rate. Radiation-Induced Chromosome Damage
in man. 1983; 23: 23-49
21. Rao B.S; Natarajan A.T.; Retrospective biological
dosimetry of absorbed radiation Radiation Protrection
Dosimetry. 2001; 95: 17-23.
Ekim-Aralık 2003 BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER; COŞKUN VE COŞKUN
217
22. Stronati.; Durante M.; calibration curves for biological
dosimetry by fluorescence in situ hybridisation. 2001; 94:
335-345.
23. Pala, F.S., Moquett J. E, Edwards A. A, Lloyd D.C. In
vitro transmission of chromosomal aberrations through
mitosis in human lymphocytes. Mutation Research. 2001;
474: 139-146.
24. Fenech, M. The Cytokinesis-Block Micronucleus
Techique and Its application to Genotoxicity Studies in
Human Populations. Environmental Health Perspectives.
1993; 101: 101-107.
25. Köksal, G., Dalcı, D.Ö. and Pala, F.S. Mikronuclei in
Human Lymphocytes: the Co-60 Gamma-ray doseresponse.
Mutation research. 1996; 359: 151-157.
26. Leonard A., Baltu I., Dose-effect relationship for in vivo
and in vitro induction of dicentric aberrations in blood
lymphocytes of children. Radiation Research. 1995; 141:
95-98.
27. Weber, J. Scheid W, Traut H. Biological Dosimetry After
Extensive Diagnostic X-ray Exposure Health Physics.
1995; 68: 266-269.
28. Schmid E. and Bauchinger M. Comparison of the
chromosome damage and its dose response after medical
Whole-body exposure to 60Co γ-rays and irradiation of
blood in vitro. Int. J. Radiat. Biol. 1974; 26: 31-37.
29. Padovani L, Caporrossi D, Cytogenetic Study of
Lymphocytes from children exposed to ionizing radiation
after the Chernobyl accident. Mutation Research.1993;
319: 55-60.
30. Clemenger J. F. P and Scott D. A Comparison of
chromosome aberration yields in rabbit blood
lymphocytes irradiated in vitro and in vivo. Int J. Radiat.
Biol..1973; 24: 487-496.
31. Dolphin G. W. Biological Dosimetry with Particular
Reference to Chromosome Aberration Analysis. A
review of Methods. In: Handling of Radiation Accidents.
STI/PUB/229 IAEA SM 119/4. Vienna. 1969; 215-24.
32. Coşkun, M. X-Işını ile Çalışan Bireylerin Biyolojik
Dozimetrisi. İstanbul Üniversitesi Fen Bilimleri
Enstitüsü, 1998.
33. Merkle W. Statistical Metods in Regresyon and
Calibrasyon Analysis of Chromosome aberration Data.
Radiat. Environm. Biophsy . 1983; 21: 217-233.
34. Moorhead, P.S; Nowell, P.C; Mellnan, W.J.
Chromosome Preparation of Leukocytes Cultured from
Human Peripheral Blood. Experimental Cell Res.m.
1960; 20: 613-618.
35. Coşkun M., Top A., Orta T., Biological Dosimetry
Following X-ray Irradiation. Turk J Med Sci. 2000; 30:
563-569.
36. Braselmann H., Schmid E., Bauchinger M. Chromosome
aberrations in nuclear power plant warkers: the influence
of dose accumulation and lymphocyte life-time Mutation
Research. 1994; 306: 197-202.
37. Virsik, P. R., Dietrich, H. Recovery Kinetics of
Radiation-Induced Chromosome Aberrations in Human
G0 Lymphocytes. Radiat. Environ.Biophys. 1980; 18:
221-238.
38. Natarajan, A.T., Obe, G. Mutagenecity testing with
cultured mamalian cells: cytogenetic assays. In:
Mutagenecity (J.A.Heddle, Ed.), Academic Press, New
York. 1982; 172-204.
39. Purrot, R J; Vulpis, N; Lloyd, D C The use of halequin
staining to measure delay in the human lymphocyte cell
cycle induced by in vitro X-irradiation, Mutation
Research. 1980; 69: 275-282.
40. Doloy, M T; Malabet, J. L., Use of Unstable chromosome
aberrations for after the postirradiation mitosis. Radiation
Research. 1991; 125: 141-151.
41. Wagner R., Schmid E, and Bauchinger M. Appilication
of Conventional and FPG Staining for the analysis of
chromosome aberration ınduced by low levels of dose in
human lymphocytes. Mutation Research .1983; 109: 65-
71.
42. Edwards A.A.; The Evidence for One-Hit Chromosome
Exchances, Rad. and Environm. Biophs. 1997; 14:161-
165.
43. Todorow SL: Radiat-Induced chromosome aberrations in
human peripheral lymphocytes. Exposure to X-rays or
protons. Strahlenteropic. 1975; 149: 197-203.
44. Edwars A.A. Lloyd D.C. and Purrott R.J. Radiation
Induced Chromosome Aberration and the Poisson
Distribution. Radiat. Environ. Biophys. 1979 ; 16: 89-95.
45. Kellerer A.M.; and Brenot J.; On the Statistical
Evaluation of Dose Response Functions.rad.and
Environm.Biophs. 1974; 11: 1-13.
46. 46. Garcia O. F. Ramalho A. T. Giorgio M. D et al.
Intercomparison in Cytogenetic Dosi metry among
Five Laboratories from Latin America. Mutat.Res. 1995;
327:33-39.
47. Luchnik NV: Do one-hit chromosome exchanges exist?
Radiat. Environ. Biophys. 1975; 12: 197-204.
48. Barquinero J. F. Barrios L. Caballin M. R et al.
Biological Dosimetry in Simulated in Vitro Partial
Irradiation. Int. J. Radiat. Biol. 1997; 71: 435-40.
49. Brewen JG, Preston RJ, Lifllefield LG, Radiationinduced
human chromosome aberration yields following
an accidental whole-body exposure to 60Co γ-rays.
Radiat. Res. 1972; 49: 647-652.
50. Lloyd DC, Purrott RJ, Dolphin GW, Edwards AA:
Chromosome aberrations induced in human lymphocytes
by neutron irradiation. Int J Radiat Biol. 1976; 29: 169-
176.
CERRAHPAŞA TIP DERGİSİ Cilt (Sayı) 34 (4)
218
51. Top, A., Coşkun, M., Orta, T. Biological Dosimetry of
Co-60 Gamma İrradiation. Turk. J. Haematol. 2000; 17:
189-196.
52. Traut H. Procedure for Calculating the radiation dose
from the field of radiation induced chromosome
aberrations after exposure during several years. Studia
biophysica. 1990; 138: 201-203.
53. Catena, C: Conti D. Cytogenetic dosimetry: dose-effect
curves and methodological comparison La Medicina Del
Lavoro. 1993; 84: 133-148.
54. Edwards AA, Lloyd DC. On the prediction of dose-rote
effect for dicentric production in human lymphocytes by
X and γ rays. Int. J. Radiat. Biol. 1980; 37: 89-98.
55. Bauchinger, M., Kolin, G.J.,Schmid E., Chromosome
analysis of nuclear-power plant workers. Int. J.Radiat.
Biol. 1980; 38: 577-581.
56. Awa, A.A., Persistent Chromosome Aberrations in the
somatic Cells of A- bomb Survivors, Hiroshima and
Nagasaki. J. Radiat. Res. 1991; 34: 265-274.
57. Scheid, W., Weber, J., Traut H., Chromosome
Aberrations Induced in the Lymphocytes of Pilots and
Stewardesses. Naturwissenschaften. 1993; 80: 528-530.
58. 58. Sinues, M. I., Viguera, J.P. Chromosome aberrations
and urinary thioethers in smokers. Mutation Research.
1990; 240: 289-293.
59. Pressl, S., Edwards, A., Stephan, G., the influence of age,
sex and smoking habits on the background level of fishdetected
translocation. Mutation Resarch. 1999; 442: 89-
95.
60. Huber, R., Strong, S., Bauchinger, M., Suitability of the
human lymphocyte micronucleus assay system for
biological dosimetry. Mutation Resarch. 1983; 111: 185-
193.
61. Müller, W.U., Rode, A., The micronucleus assay in
human lymphocytes after high radiation doses (5-15 Gy)
Mutation Resarch. 2002; 93: 1-5. (in press).
62. Paillole, N., Voisin, P., Is micronuclei yield variability a
problem for overexposure dose assessment to ionizing
radiation? Mutation Resarch. 1998; 413: 47-56.
63. Cologne, JB; Pawel, DJ, Presyon, DL Statictical issues in
biological radiation dosimetry for risk assesment using
stable chromosome aberrations. Health Physics. 1998; 75:
518-529.
64. Gollnick A.D.; Basic Radiation Protection Technology,
2nd edition, California, Pasific Radiation Corporation.
1988; 65-69.

Thank you for copying data from http://www.arastirmax.com