You are here

Bazı Elma (Malus sylvestris Miller) Çeşitlerinin Gövde Çeliklerinde Eksojen İndol-Butirik-Asit ve Kallus Oluşumunun Etkileri İle İlgili Fizyolojik Değişimlerin Belirlenmesi

Determination of Physiological Changes in Related to Effects of Exogenous Indole-Butyric-Acid and Callus Formation in Some Kinds of Apple (Malus sylvestris Miller) Stem Cuttings

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the effect of exogenous indole-butyric-acid and callus formation on the total chlorophyll a, chlorophyll b, carotenoids, anthocyanin and carbohydrate contents in cuttings stems of three apple (Malus sylvestris Miller) kinds ('Golden delicious', 'Starkrimson delicious' and 'Misket delicious') were investigated. The callus formation percentage increased with indole-butyric-acid treatment of three apple kinds but it was decreased at certain concentrations of indole-butyric-acid (3000 mg/L) in some apple kinds ('Golden delicious' and 'Starkrimson delicious'). For all of the three apple kinds, total chlorophyll a, chlorophyll b, carotenoids contents of the callus stems were lower than non-callus stems, however anthocyanin content was high in callus stems of three apple kinds. In all indole-butyric-acid treated (2000 and 3000 mg/L) apple kinds, it was showed an increase in chlorophyll a, chlorophyll b, carotenoids and anthocyanin contents of the callus compared to control. Although carbohyrate contents were decreased by callus formation, there were no significant differences between callus treated with indole-butyric-acid (2000 and 3000 mg/L) and control callus in three apple kinds.
Abstract (Original Language): 
Bu çalışmada, üç elma (Malus sylvestris Miller) çeşidinin ('Golden', 'Starkrimson' ve 'Misket') gövde çeliklerinde, eksojen indol-butirik-asit ve kallus oluşumunun toplam klorofil a, klorofil b, karotenoid ve karbohidrat içeriği üzerine olan etkileri incelenmiştir. Üç elma çeşidinin kallus oluşum yüzdesi, indol-butirik-asit uygulaması ile artmış fakat bazı elma çeşitlerinde (Golden ve Starkrimson) indol-butirik-asit'in belirli konsantrasyonlarında (3000 mg/L) azalmıştır. Üç elma çeşidinin hepsinde, kalluslu gövdelerdeki toplam klorofil a, klorofil b, karotenoid içerikleri kallussuz gövdedekilerden daha düşüktü, bununla birlikte üç elma çeşidinin kalluslu gövdelerinde antosiyanin içeriği yüksekti. İndol-butirik-asit uygulanan (2000 ve 3000 mg/L) bütün elma çeşitlerinde, klorofil a, klorofil b, karotenoidler ve antosiyanin içerikleri, kallus-kontrolüne göre artma göstermiştir. Üç elma çeşidinde, kallus oluşumu sonucu karbohidrat içeriği azaldığı halde, indol-butirik-asit uygulanan kallus ile kontrol kallusu arasında önemli bir farklılık yoktu.
1-12

REFERENCES

References: 

[1]. E. H Wilkinson. and A. M. Withnall, Grower, 1970, 74,182-183.
[2]. D. Noiton, J. H. Vine and M.G. Mullins, Plant Growth Regul., 1992, 11, 377-383.
[3]. Z. Weisman, J. Riov and E. Epstein, Physiol. Plant., 1988, 74, 556-560.
[4]. M. Ahmed, M.H Laghari, I. Ahmed and K.M. Khokhar, Asian J. Plant Sci., 2002,
1(3), 228-229.
[5]. F. A. Blazich, Advances in Plant Sciences, Portland, OR. Dioscorides Press.1988,
11-28.
[6]. H.T. Hartmann, D. E. Kester and J.R. Davies, Plant Propagation Principle and Practices. Prentice-Hall International, Eaglewood Cliffs Editions, NJ, 1990, 647. [7]. S. Kaur, S. S. Cheema, B.R. Chhabra and K.K. Talwar, Plant Growth Regul., 2002,
37, 63-68.
[8]. P.J. Kramer and T.T. Kozlowski, Physiology of woody plants. Academic Press,
London. 1979, 258-274.
[9]. T.W. Goodwin, The biochemistry of the carotenoids. Plants, Chapman and Hall,
London. 1980, Vol.1. [10]. M. Yoshimoto, Farming Japan., 2001, 35(6), 22-28.
11
[11]. W.J. Steyn, S.J.E. Wand, D.M. Holcroft and G. Jacobs, New Phytol., 2002, 155 (3), 349.
[12]. J. Levitt, Responses of plants to environmental stresses. 2nd edn., Vol.1. Chilling, freezing and high temperature stresses. Academic Press, Newyork. 1980, 497.
[13]. B. Veierskov, Relations between carbohydrates and adventitious root formation. In: Davis, T.D., Haissig, B.E. and Sankhla, N. (eds) Adventitious root formation in cuttings. Portland OR: Dioscorides Press., 1988, pp. 70-78.
[14]. L.J. De Kok and M. Graham, Plant Physiology and Biochemistry, 1989, 27, 203¬209.
[15]. H.K. Lichtenthaler and A.R. Wellburn, Biochem. Soc.Trans, 1983, 11, 591-592. [16]. F.P. Reay, R.H. Fletcher and V.J.G. Thomas J. Sci. Food. Agric., 1998, 76, 63-71. [17]. A.L. Mancinelli, C.P. Huang-Yang, P. Lindquist, O.R. Anderson and I. Rabino
Photocontrol Plant Physiol., 1975, 55, 251-257. [18]. M.R. McCready, J. Guggolz, V. Silviera and S.H. Owens, Anal. Chemistry, 1950,
22, 1156-1158. [19]. L.F. Ebell, Phytochemistry, 1970, 8, 227-233. [20]. A. Qaddoury, M. Amssa, Bot Bull Acad Sin., 2004, 45, 127-131. [21]. A.K. Mousa, Pakistan J. Biol. Sci., 2003, 6(24), 2040-2043. [22]. M. Azimi and R.J. Bisgrove, Exp. Hortic., 1975, 27, 22-27. [23]. Z. Wiesman and S. Lavee, Australian J. Plant Physiol., 1995, 22(5), 811-816. [24]. F. Betsui, N. Tanaka-Nishikawa and K. Shimomura, Plant Biotechnol., 2004,
21(5), 387-391.
[25]. H. Mizukami, K. Tomita, H. Ohashi and N. Hiraoka, Plant Cell Reports, 1988,
7(7), 553-556.
[26]. V.K. Rapaka, B. Bessler, M. Schreiner and U. Druege, Plant Science, 2005, 168 (6), 1547-1560.
[27]. B.E. Haissig, Metabolic processes in adventitious rooting of cuttings. In New Root
Formation in Plants and Cuttings (M.B.Jackson, ed.), 1986. pp. 141-189. [28]. L. R. Correa, D.C. Paim, J. Schwambach and A.G. Fett-Neto, Plant Growth
Regul., 2005, 45, 63-73.

Thank you for copying data from http://www.arastirmax.com