You are here

Bazı Meşe ve Gül Türlerinin Galli ve Galsiz Bireylerindeki, Total Protein İçeriğinin Farklı Yöntemler Kullanılarak Araştırılması

A Study of Total Protein Content in some Oak and Rose Species with and without Galls

Journal Name:

Publication Year:

Abstract (2. Language): 
Plant galls are an abnormal growth pattern that plants develop as a defense reaction to irritations and negative nutritional physiology caused by insects, nematodes, mites, bacteria and fungi living in a parasitic or symbiotic relationship with the plant. Many of the most complex and organized galls are created by gall wasps (Hymenoptera: Cynipidae). The most common cynipid types are seen in oak and rose species. In this research, samples of leaves, fruit and shoot galls were collected from oak and rose species, some of which create these galls intensely. Total protein levels were calculated using four methods: Bradford Micro Assay, Biuret, Lowry methods and UV spectrophotometer at 260/280 nm. The results were compared in terms of the protein levels of plants with or without galls, and of the four different methods used. Total protein was significantly higher in plants with galls than those with no galls. Protein content in oaks was double that of roses. When the data were analyzed by months, higher protein content was observed in september for oaks, and in august for rose hips.
Abstract (Original Language): 
Parazit veya simbiyoz olarak bitki üzerinde yaşayan böcek, nematod, akar, bakteri ya da mantarların neden olduğu tahriş ve beslenme fizyolojisinden doğan olumsuzluklara karşı bitkilerin savunma tepkimesi olarak oluşturdukları anormal büyüme şekli gal olarak tanımlanmaktadır. En kompleks, en iyi organize olmuş gallerin birçoğu, gal arıları (Hymenoptera: Cynipidae) tarafından meydana getirilirler. En çok tanınan cynipid galleri gül ve meşelerde yer almaktadır. Bu çalışmada; Sivas çevresinde yetişen, bazı meşe ve gül türlerinin, gal oluşturmayan ve yoğun olarak sürgün ve meyva gali oluşturan bireylerinden yaprak, meyva ve sürgün gal örnekleri toplanmıştır. Yaprak, meyva ve gallerdeki total protein miktarları, Bradford Mikro Assay, Biüret, Lowry yöntemleri ve ayrıca Ultraviyole (UV) spektrofotometresi kullanılarak 280 nm de ölçümleri yapılmak suretiyle hesaplanmıştır. Bu şekilde elde edilen veriler üzerinden hem galli ve galsiz bireyler arasındaki protein miktarları açısından farklılıklar hem de kullanılan dört farklı yöntem arasındaki farklılıklar karşılaştırılmıştır. Yapılan deneyler sonucunda; galli bireylerdeki total protein miktarının galsiz bireylere göre anlamlı şekilde fazla olduğu saptanmıştır. Yine meşelerdeki protein içeriğinin güllerdeki protein içeriğine göre yaklaşık 2 katı değerlerde olduğu tespit edilmiştir. Aylara göre protein içeriğindeki farklılıklara baktığımızda ise, meşeler için eylül ayında, kuşburnu bitkisi için ise ağustos ayında daha fazla protein içeriği tespit edilmiştir.
1-19

REFERENCES

References: 

[1] Mani, M.S., Ecology of plant galls. Dr. W. Junk, Publishers, The Hague. 1964.434p. [2] Bagatto, G., Paquette, L.C., Shorthouse, J.D., Influence of galls of Phanacis taraxaci on karbon partitioning within common dandelion, Taraxacum ofıcinale. Entomol Exp Appl. 1996. 79:111-117.
Bazı Meşe ve Gül Türlerinin Galli ve Galsiz Bireylerinde, Total Protein İçeriğinin Araştırılması [3] Abe, Y., Relationships between the gallwasp Trichagalma serratae (Ashmead) (Hymenoptera, Cynipidae) and 2 month species Andrioplecta pulverula (Meyrick) (Lepidoptera,Tortricidae) and Characoma ruficirra (Hampson) (Lepidoptera, Noctuidae). Appl. Entomol. Zool.1995. 30:83–89. [4] Abe, Y., Well-developed gall tissues protecting the gall wasp, Andricus mukaigawae , (Mukaigawa) (Hymenoptera: Cynipidae) against the gall- inhabiting moth, Oedematopoda sp. (Lepidoptera: Stathmopodidae. Appl. Entomol. Zool., 1997. 32:135–41. [5] Mani M.S., Introduction to Cecidology. In: Shorthouse JD, Rohfritsch O, eds. Biology of insect-induced galls.1992. New York, NY, USA: Oxford University Press, 3–7. [6] Rohfritsch, O., A fungus associated gall midge, Lasioptera arundinis (Schiner), on Phragmites australis (Cav.) Trin. Bulletin de la Societe Botanique de France, Letters Botaniques 1992. 139, 45-59. [7] Yang, M.M. and Tung, G.S., The diversity of insect-induced galls on vascular plants in Taiwan: a preliminary report. In G. Csóka, W. J. Mattson, G. N. Stone, and P. W. Price (eds.), 1998, The Biology of Gall-Inducing Arthropods. Gen. Tech. Rep. NC-199. St. Paul, MN: USDA, Forest Service, North Central Forest Experiment Station, pp.44-53. [8] Brooks S.E. and Shorthouse J.D., Developmental morphology of stem galls of Diplolepis nodulosa (Hymenoptera: Cynipidae) and those modified by the inquilines Periclistus pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Can. J. Bot., 1998. 76(3): 365–381. [9] Schönrogge K., Harper L.J., Brooks S.E., Lichtenstein C.P., The protein content of tissues in cynipyds galls (Hymenoptera;Cynipidae); Simillarities between cynipids gall and seeds. Plant, Cell and Enviroment., 2000. 23; 215-222. [10] LeBlanc D.A. and Lacroix, C.R., Developmental Potential of Galls Induced by Diplolepis rosaefolii (Hymenoptera: Cynipidae) on the Leaves of Rosa virginiana and the Influence of Periclistus Species on the Diplolepis rosaefolii Galls. Int. J Plant Sci., 2001. 162 (1) : 29–46. 2001. [11] Stone, G.N., Schonrogge, K., Atkinson, R.J., Bellido, D., Pujade-Villar, J., The Population Biology Of Oak Gall Wasps (Hymenoptera: Cynipidae). Annual Review of Entomology, 2002. 47(1): 633-668.
[12] Strauss, S. Y., and Zangerl, A.R., Plant-insect interactions in terrestrial ecosystems. Pages 77-106 in C. M Herrera and O. Pellmyr, editors. Plant-Animal Interactions: An Evolutionary Approach., 2002. Blackwell Publishing, Malden, MA. [13] Özcan, T., Total protein and amino acid compositions in the acorns of Turkish Quercus L. taxa. Genetic Resources and Crop Evolution, 2006. 53: 419–429. [14] Bradford, M. M., A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72, 248–254. [15] Turner, S. R. Barratt, D.H.P., Casey, R., The effect of different alleles at the r locus on the synthesis of seed storage proteins in Pisum sativum. Plant Mol. Biol., 1990. 14, 793–803. [16] Warburg, O., Christian W., Isolierung und kristallısation des garungsfermente enolase. Biochem. Z., 1941. 310, 384 – 421. [17] Burstin, J., Marget, P., Huart, M., Moessner, A., Mangin, B., Duchene, C., Desprez, B., Munier-Jolain N., and Duc, G., Developmental Genes Have Pleiotropic Effects on Plant Morphology and Source Capacity, Eventually Impacting on Seed Protein Content and Productivity in Pea. Plant Physiology,2007. 144:768-781. [18] Tar'an B., Warkentin, T., Somers, D.J., Miranda, D., Vandenberg, A., Blade, S., Bing, D., Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.) Euphytica, 2004. 136: 297– 306. [19] Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem., 1976. 72, 248-254. [20] Lowry, O.H., Rosebrough, N.J., Farr A.L. ve Randall, R.J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 1951. 193, 265-275. [21] Schleif, R. F. ve Wensink, P., Practical Methods in Molecular Biology, 1981. Springer-Verlag, New York. [22] White, T.C.R., The Inadequate Environment. Nitrogen and the Abundance of Animals., 1993. Springer Verlag, Berlin. [23] Aspinal, D., Paleg L.G., Proline accumulation; Physiologycal aspect. 1981. In Paleg LG, Aspinal D, eds. The physiology and biochemistry of drought resistance in plants. Australia; Academic Press. 205-240.
Bazı Meşe ve Gül Türlerinin Galli ve Galsiz Bireylerinde, Total Protein İçeriğinin Araştırılması [24] Koçak, H., Sivas çevresinde yetişen kuşburnu (Rosa canina L.) bitkisinin gal oluşturan ve oluşturmayan bireylerindeki fizyolojik değişikliklerin araştırılması, (Y. Lis. Tezi), 2007. Danışman Prof. Dr. İbrahim Yalçın. [25] Albert S, Padhiar A, Gandhi D and Nityanand P. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Revista Brasil. Bot., 2011. V.34, n.3, p.343-358. [26] Koyama Y, Yao I & Akimoto S. Aphid galls accumulate high concentrations of amino acids: a support for the nutrition hypothesis for gall formation. The Netherlands Entomological Society Entomologia Experimentalis et Applicata 2004. 113 : 35–44. [27] Scareli-Santos, C., Teixeira, S.P. & Varanda, E.M. Anatomy of foliar galls of Pouteria torta (Sapotaceae) induced by Voungmyia sp. (Diptera,Cecidomycidae). Phytomorphology 2008.58:139-144. [28] Arora, D.K. & Patni, V. Localization of metabolites and enzymes in insect induced rachis gall and normal tissues of Prosopis cineraria (Linn.) Druce. Journal of Phytological Research 2001. 14:179-181. [29] El-Akkad, S.S.. Biochemical changes induced in Populus nigra leaves by galling aphids Pemphigous populi. International Journal of Agricultural and Biology, 2004. 6:659-664. [30] Bayer, M.H. Fatty acid composition of galactolipids and phospholipids in neoplasmatic plant tissues (cecidia) and normal leaf tissue. Physiol. Plant, 1991. 81, 313-318. [31] Bayer, M.H. Biochemical modification of the phenotype in cynipid gall: cell membrane lipids. In:Williams, M.A.J. (Ed.), Plants Galls: Organisms, Interactions, Populations. Clarendon Press, Oxford , 1994, pp. 429-446. [32] Harris, P., Shorthouse, J.D. Effectiveness of gall inducers in weed biological control. Can. Entomol., 1996. 128, 1021-1055. [33] Price, P.W., The plant vigour hypothesis and herbivore attack. Oikos,1991.62:244-51. [34] Strauss, S.Y., and Zangerl, A.R., Plant-insect interactions in terrestrial ecosystems., 2002. Pages 77-106 in C. M Herrera and O. Pellmyr, editors. Plant-Animal Interactions: An Evolutionary Approach. Blackwell Publishing, Malden. [35] Sacchi, C., Herbivore Responses to Plant Vigor and Herbivore Impact on Plant Reproduction. Teaching Issues and Experiments in Ecology. 2006. v. 4. Bio 344, Predation Lab. Exercises. Adapted from Christopher F. Sacchi, 2006.
[36] Paige, K.N., and Whitham, T.G., Overcompensation in response to mammalian herbivory: the advantage of being eaten. American Naturalist, 1987. 129:419-428. [37] Fornoni, J., Nunez-Farfan, J., and Valverde, P.L., Evolutionary aspects of tolerance to herbivory: advances and perspectives. Comments on Theoretical Biology, 2003. 8:643-663. [38] Gornall, A.G., Bardawill, C.J., David,M.M., Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949. 177: 751-766. [39] Zaia, D.A.M., Verri Jr. W.A., Zaia, C.T.B.V., Determination of total proteins in several tissues of rat: a comparative study among spectrophotometric methods. Microchemical Journal, 2000. 64: 235-239.

Thank you for copying data from http://www.arastirmax.com