You are here

Intestine Bacterial Composition of the Chromosomal forms of genus Nannospalax and Comparison of Some Rodent Species

Journal Name:

Publication Year:

Abstract (Original Language): 
In this study, five selected different rodent species, Meriones tristrami (karyotype 2n=72 from Mardin/Turkey), Nannospalax ehrenbergi (karyotype 2n=52 from Diyarbakır/Turkey and Mosul/Iraq), Nannospalax nehringi (karyotype 2n = 60 from Sivas/Turkey), Rattus rattus (karyotype 2n=42 from Diyarbakır/Turkey), Sciurus anomalus (karyotype 2n=40 from Bingöl/Turkey) were studied in respect to bacterial species. The results showed the presence of two types of bacteria Pantoea agglomerans and Serratia liquefaciens in intestine Nannospalax ehrenbergi and N. nehringi; as bacterial species isolated Aeromonas hydrophila and Klebsiella oxytoca from intestine Meriones tristrami and Rattus rattus. Salmonella choleraesuis is also found in R. rattus. The bacterial species isolated Klebsiella oxytoca and Salmonella choleraesuis from intestine Sciurus anomalus. It is the first study of its kind in the detection of bacterial species present in specific types of rodents
28
35

REFERENCES

References: 

[1] Topachevskii, V.A., 1969. Fauna of the USSR: Mammals Mole-Rats, Spalacidae. Vol.3
No.3, 1-308.
[2] Musser, G. and Carleton, M., 2005. Superfamily Muroidea. In: Wilson D.E. & Reeder D.M.
(eds.), Mammal Species of the world: A taxonomic and geographic reference, 3rd edition.
Baltimore, The Johns Hopkins Univ. Press, 894–1531.
No Sample
size Rodent species 2n
A. hydrophila
K. oxytoca
P. agglomerans
S. choleraesuis
S. liquefaciens
1 3 Meriones tristrami
Mardin/Turkey 72 2 2 0 0 0
2 2 Rattus rattus
Diyarbakır/Turkey 42 1 2 0 2 0
3 3 Nannospalax nehringi
Sivas/Turkey 60 0 0 3 0 3
4 3 Nannospalax ehrenbergi
Mosul/Iraq 52 0 2 3 0 2
5 4 Nanonspalax ehrenbergi
Diyarbakır/Turkey 52 0 0 3 0 2
6 2 Sciurus anomalus
Bingöl/Turkey 40 0 2 0 2 0
Intestine Bacterial Composition of the Chromosomal forms of genus
33
[3] Lay, D.M. and Nadler, C.F., 1972. Cytogenetics and origin of North African Spalax
(Rodentia: Spalacidae). Cytogenetics 11, 279-285.
[4] Savic, I. and Nevo, E., 1990. The Spalacidae: Evolutionary history, speciation and
population biology. [In: Evolution of subterranean mammals at the organismal and molecular
levels. Nevo E. and Reig O. A., eds.] New York, 129-153.
[5] Nevo, E., Filippucci, M.G., Redi, C., Simson, S., Heth, G. and Beiles, A., 1995. Karyotype
and genetic evolution in speciation of subterranean mole rats of the genus Spalax in Turkey. -
Biological Journal of the Linnean Society 54, 203-229.
[6] Coşkun, Y., Ulutürk, S. and Yürümez, G., 2006. Chromosomal diversity in mole-rats of the
species Nannospalax ehrenbergi (Rodentia: Spalacidae) from South Anatolia, Turkey.
Mammalian Biology - Zeitschrift fur Saugetierkunde 71 (4), 244–250.
[7] Nehring, A., 1898. Über mehrere neue Spalax Arten. Sitzungsber der Gesellsch.
Naturforsch., Freunde z. Berlin. 10, 171-183.
[8] Coşkun, Y., Ausama, E., Alaettin, K. and Zohair, I.F.R., 2012. Karyotypes of Nannospalax
ehrenbergi (Nehring 1898) (Rodentia: Spalacidae) in the Mosul Province, Iraq. Hystrix, It. J.
Mamm. 23 (2), 72-75.
[9] Saphra, I. and Wassermann, M., 1954. Salmonella choleraesuis. A clinical and
epidemiological evaluation of 329 infections identified between 1940 and 1954 in the New
York Salmonella Center. Am. J. Med. Sci. 228, 525-533.
[10] Barrel, R.A., 1987. Isolations of salmonellas from humans and foods in the Manchester
area: 1981-1985. Epidemiol. Infect. 3, 277-284.
[11] Bäumler, A.J., Tsolis, R.M., Bowe, F.A., Kusters, J.G., Hoffmann, S. and Heffron, F.,
1996. The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small
intestine and is necessary for fluid accumulation in the infant mouse. Infect. Immun. 64, 61-68.
[12] Barza, M., 2002. Potential mechanisms of increased disease in humans from antimicrobial
resistance in food animals. Clin. Infect. Dis. 34 (Suppl. 3), 123—125.
[13] Alonso, F.R. and Baquero, M.F., 1994. [The genus Serratia: its biology, clinical effects and
epidemiology]. Rev Clin Esp. 194(4), 294-299.
Ausama MS El-Namee, Yüksel COŞKUN, Alaettin KAYA
34
[14] Haddy, R.I., Mann, B.L. and Nadkarni, D. D., 1996. Nosocomial infection in the
community hospital: severe infection due to Serratia species. J Fam Pract. 42 (3), 273-277.
[15] Grohskopf, L.A., Roth, V.R., and Feikin, D.R, 2001. Serratia liquefaciens bloodstream
infections from contamination of epoetin alfa at a hemodialysis center. N Engl. J. Med. 344
(20), 1491-1497.
[16] Robinson, J., Beaman, J., Wagener, L. and Burke, V., 1986. Comparison of direct plating
with the use of enrichment culture for isolation of Aeromonas sp. from faeces. J. Med.
Microbiol. 22, 315-317.
[17] Krovacek, K., Dumontet, S., Eriksson, E. and Baloda, S.B., 1995. Isolation, and virulence
profiles, of Aeromonas hydrophila implicated in an outbreak of food poisoning in Sweden.
Microbiol. Immunol. 39, 655-661.
[18] Abuhammour, W., Hasan, R.A. and Rodgers, D., 2006. Necrotizing fasciitis caused by
Aeromonas hydrophila in an immunocompetent child. Pediatr. Emerg. Care 22, 48-51.
[19] Adamski, J., Koivuranta, M. and Leppänen, E., 2006. Fatal case of myonecrosis and
septicaemia caused by Aeromonas hydrophila in Finland. Scand. J. Infect. Dis. 38, 117-199.
[20] Easow, J.M. and Tuladhar, R., 2007. Aeromonas hydrophila wound infection following a
tiger bite in Nepal. Southeast Asian J. Trop. Med. Public Health 38, 867-870.
[21] Baker, D.G., 1998. Natural pathogens of laboratory mice, rats, and rabbits and their effects
on research. Clinical Microbiology Reviews 11, 231–66.
[22] Ishida, T, Hashimoto, T, Arita, M, Ito, I. and Osawa, M., 1998. Etiology of community -
acquired pneumonia in hospitalized patients: a 3-year prospective study in Japan. Chest 114,
1588–1593.
[23] Podschun, R., and Ullmann, U., 1998. Klebsiella spp. asnosocomial pathogens:
epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology
Reviews 11, 589–603.
[24] Sahly, H., Podschun, R. and Ullmann. U,, 2000. Klebsiella infections in the
immunocompromised host. Advances in Experimental Medicine and Biology 479, 237–49.
Intestine Bacterial Composition of the Chromosomal forms of genus
35
[25] De Champs, C., Le Seaux, S., Dubost, J.J., Boisgard, S., Sauvezie, B. and Sirot J., 2000.
Isolation of Pantoea agglomerans in two cases of septic monoarthritis after plant thorn and
wood sliver injuries. J. Clin. Microbiol. 38, 460-461.
[26] Asis, C.A. and Adachi, K., 2004. Olation of endophytic diazotroph Pantoea agglomerans
and nondiazotroph Enterobacter asburiae from sweetpotato stem in Japan. Lett Appl
Microbiol. 38 (1), 19-23.
[27] Cruz, A.T., Cazacu, A.C. and Allen, C.H., 2007 Pantoea agglomerans, a Plant Pathogen
Causing Human Disease Clin Microbiol. 45 (6), 1989-1992.
[28] Coşkun, Y., 1999. Diyarbakır Meriones tristrami Thomas, 1892 (Rodentia Gerbillidae)
örneklerinin morfolojik özellikleri. Turkish Journal of Zoology 23 (2), 345-355.

Thank you for copying data from http://www.arastirmax.com