[I] Dommel,H.W., Tinney,T.F., "Optimal power flow solutions", IEEE Transactions on Power Apparatus System, Vol.87, No.5, pp. 1866-1876, 1968.
[2] Minano, RZ., Van Cutsem, T., Milano, F., Conejo, AJ., "Securing transient stability using time-domain simulations within an optimal power flow", IEEE Transactions on Power System, Vol.25, No.1.pp.243-53,2010.
[3] Alsac, O., Stott, B., "Optimal load flow with steady state security", IEEE Transactions on Power Apparatus System, Vol.93, No.3, pp.745-51, 1974.
[4] Shoults, R., Sun, D., "Optimal power flow based on P-Q decomposition", IEEE Transactions on Power Apparatus System, Vol.101, No.2, pp.397-405, 1982.
[5] Mota-Palomino, R., Quintana, VH., "Sparse reactive power rescheduling by a penalty-function linear programming technique", IEEE Transactions on Power System, Vol.1, No.3, pp.31-9, 1983.
[6] Burchett, RC., Happ, HH., Vierath, DR., "Quadratically convergent optimal power flow", IEEE Transactions on Power Apparatus System, Vol.103, pp.3267-76, 1984.
[7] Ambriz-Perez, H., Acha, E., Fuerte-Esquivel, CR., "Advanced SVC models for Newton-Raphson load flow and newton optimal power flow studies", IEEE Transactions on Power Systems, Vol.15, No.1, pp.129-36, 2000.
[8] Wei, H., Sasaki, H., Kubokawa, J., Yokoyama, R.. "An interior point nonlinear programming for optimal power flow problems whit a novel structure data", IEEE Transactions on Power System, Vol.13, pp.870-7, 1998.
[9] Yan, X., Quantana, VH., "Improving an interior point based OPF by dynamic adjustments of step sizes and tolerances", IEEE Transactions on Power System, Vol.14, No.2, pp.709¬17, 1999.
[10] Momoh, JA., Zhu, JZ., "Improved interior point method for OPF problems", IEEE Transactions on Power System, Vol.14, No.3, pp.1114-20, 1999.
[II] Lai, LL., Ma,JT., "Improved genetic algorithms for optimal power flow under both normal and contingent operation states", International Journal of Electrical Power& Energy System, Vol.19,No.5, pp.287-92,1997.
[12] Bakirtzis, AG., Biskas, PN., Zoumas, CE., Petridis, V., "Optimal power flow by enhanced genetic algorithm", IEEE Transactions on Power System,Vol.17.No.2, pp.229-36,2002.
[13] Roa-Sepulveda, CA., Pavez-lazo, BJ., "A solution to the optimal power flow using simulated annealing", International Journal of Electrical Power& Energy System, Vol.25, No1, pp.47-
57,2003.
[14] Varadarajan, M., Swarup, kS., "Solving multi-objective optimal power flow using differential evolution", IET Generation Transmission Distribution, Vol.2, No.5, pp.720-30,
2008.
224
A Hybrid Particle Swarm Optimization and Gravitational Search Algorithm for Solving Optimal Power Flow Problem
[15] Abou El Ela, AA., Abido, MA., Spea, SR., "optimal power flow using differential evolution
algorithm", Electrical Power System Research Vol.80, No.7 , pp.878-85, 2010. [16] Yuryevich, J., Wong, KP., "Evolutionary based optimal power flow algorithm", IEEE
Transactions on Power System, Vol.14, No.4, pp.1245-50, 1999. [17] Sood, YR., "Evolutionary programming based optimal power flow and its validation for
deregulated power system analysis", International Journal of Electrical Power& Energy
System, Vol.29, No.1, pp.65-75, 2007. [18] Abido, MA., "Optimal power flow using particle swarm optimization", International Journal
of Electrical Power& Energy System, Vol.24, No.7, pp.563-71, 2002. [19] Kim, JY., Mun, KJ., Kim, HS., Park, JH., "Optimal power system operation using parallel
processing system and PSO algorithm", International Journal of Electrical Power& Energy
System, Vol.33, No.8, pp.1457-61, 2011. [20] Duman, S., Güvenç, U., Sönmez, Y., Yörükeren, N., "Optimal power flow using
gravitational search algorithm", Energy Conversion and Management, Vol.59, pp.86-95,
2012.
[21] Warren Liao, T., "Two hybrid differential evolution algorithms for engineering design optimization", Applied Soft Computing, Vol.10, No.4, pp.1188-1199, 2010.
[22] Oysu, C., Bingul, Z., "Application of heuristic and hybrid-GASA algorithms to tool-path optimization problem for minimizing airtime during machining", Engineering Applications
of Artificial Intelligence, Vol.22, pp.389-396, 2009.
[23] He, D., Wang, F., Mao, Z., "A hybrid genetic algorithm approach based on differential
evolution for economic dispatch with valve-point effect", International Journal of Electrical
Power & Energy Systems, Vol.30, No1, pp.31-38, 2008. [24] Li, C.,Zhou, J., "Parameters identification of hydraulic turbine governing system using
improved gravitational search algorithm", Energy Conversion and Management, Vol. 52,
pp. 374-381, 2011.
[25] Rezaei Adaryani, M., Karami, A., "Artificial bee colony algorithm for solving multi-objective optimal power flow problem ", Electrical Power& Energy System, Vol.53, pp. 219-230, 2013.
[26] Ghasemi, M., Ghavidel, M., Rahmani Sh., "A novel hybrid algorithm of imperialist competitive algorithm and Teaching learning algorithm for optimal power flow problem with non-Smooth cost functions", Engineering Applications of Artificial Intelligence, Vol.29,
pp.54-69, 2014.
[27] Niknam, T., Narimani, MR., Jabbari, M., Malekpour, AR., "A modified shuffle frog leaping algorithm for multi-objective optimal power flow", Energy, Vol.36, pp.6420-32,2011.
[28] Sayah, S., Zehar, Kh., "Modified differential evolution algorithm for optimal power flow with non-smooth cost function", Energy Conversion and Management , Vol.49, pp.3036-
42,2008.
[29] Bakirtzis, AG., Biskas, PN., Zoumas, CE., Petridis, V., "Optimal power flow by enhanced genetic algorithm", IEEE Transactions on Power System, Vol17, No.2, pp.229-36, 2002.
[30] Niknam, T., Narimani, M.R., Azizipanah-Abarghooee, R., "A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect", Energy Conversion and Management, Vol.58, pp.197-206, 2012.
[31] MATPOWER..
[32] Vaisakh, K., Srinivas, L.R., "Evolving ant direction differential evolution for OPF with non-smooth cost functions", Engineering Applications of Artificial Intelligence, Vol.24, pp.426¬436, 2011.
Thank you for copying data from http://www.arastirmax.com