You are here

Farklı Gün Uygulamalarının Bazı Siyanobakterilerde Norharman Üretimi Üzerine Etkisi

Effects of Differential Time Applications on Some Cyanobacterial Norharman Production Rates

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.17776/csj.13491
Abstract (2. Language): 
Cyanobacteria are an important class of bacteria by their metabolic activities for biology, ecology and economy. They contain series of secondary metabolites produced under negative stress conditions and providing specialized functions. One of the metabolites which is biologically active and can be used as drug for antibacterial and antitumor properties is norharman which has (9H-pyrido 3, 4-b) indole structure. In this study, water samples were collected from Yesilirmak river of Tokat province of Turkey and cyanobacteria were isolated under inverted microscope by micropipette and microinjection and were cultured for a month. Selection from cultures was done during predetermined time courses and produced norharman levels were determined by HPLC. At 16th day maximum norharman production was determined as 8.8167 and 0.712 μg/g from Chroococcus minitus and Anabaena oryzae respectively. Highest norharman production from Nostoc linckia determined as 1.191 μg/g at 20th day. Since Geitlerinema carotinosum began exponential growth phase faster than other strains the highest amount of norharman production was determined as 0.825 μg/g at 12th day.
Abstract (Original Language): 
Siyanobakteriler, metabolizmalarından ötürü biyolojik, ekolojik ve ekonomik bakımdan önemli bakterilerdir. Özellikle çeşitli olumsuz şartlarda üretilmiş ve her biri özelleşmiş fonksiyonlara sahip bir dizi sekonder metabolit içerirler. Antibakteriyel, antikanser gibi biyolojik etkili ve ilaç olarak kullanılabilen metabolitlerden biri; 9H-Pyrido [3,4-b] indole yapısında Norharman’dır. Bu çalışmada Yeşilırmak Nehri (Tokat)’nden su örnekleri alınarak inverted mikroskop altında mikropipet ve mikro enjektör yardımıyla izole edilen siyanobakteriler ortalama bir aylık kültüre alınmıştır. Belirli zaman aralığında kültürlerden alınarak ürettikleri norharman miktarı HPLC ile tespit edilmiştir. Chroococcus minutus ve Anabaena oryzae’ de sırasıyla 8.8167, 0.712 μg/g norharman 16. günde maksimum olarak üretilmiştir. Nostoc linckia’da en fazla norharman üretimi 1.191 μg/g olup 20. gündedir. Geitlerinema carotinosum’da ise diğer türlere göre daha erken logaritmik faza girdiği 12. günde maksimum norharman metaboliti 0.825 μg/g olarak üretilmiştir.
398
404

REFERENCES

References: 

1. Altuner, Z.Sistematik Botanik-I. Aktif Yayınevi 2010, 8th edt., p.202, İstanbul, Turkey.
2. Whitton BA., Potts M. The Ecology of Cyanobacteria-Their Diversity in Time and Space, Kluwer Academic Publisher, 2000, p.669, USA. 3. Singh RK, Tiwari SP., Rai AK., Mohapatra TM. Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics, 2011, 64, 401-412.
4. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, and Wright PC. Marine cyanobacteria-a prolific source of natural products. Tetrahedron, 2001, 57, 9347-9377.
Effects of Differential Time Applications on Some
404
5. Sinha RP, Hader DP. UV-protectants in cyanobacteria. Plant Sci, 2008, 174, 278-89.
6. Pandey U and Pandey J. Enhanced production of biomass, pigments and antioxidant capacity of a nutrionally important cyanobacterium Nostochopsis lobatus. Biores Tech, 2008, 99, 4520-4523.
7. Mohamed ZA. Toxic effect of norharmane on a freshwater plancton community. Ecohydrology & Hydrobiology, 2013, 13, 226-232.
8. Li Y, Lin Y, Loughlin PC and Chen M. Optimization and effects of different culture conditions on growth of Halomicronemahongdechloris–a filamentous cyanobacterium containing chlorophyll f. Frontiersin PlantScience, 2014, 5(67), 1-12.
9. Dias E, Pereira P, Franca S. Production of paralytic shellfish toxins by Aphanizomenon sp LMECYA 31 (cyanobacteria). J Phycol., 2002, 38, 305-308.
10. Andersen AR. Algal Culturing Techniques. Academic Press, 2005, p.565, Phycological Society of America, USA.
11. John DM, Whitton BA, Brook AJ. The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University, 2002, p.700, UK.
12. Ripkka R, Castenholz RW and Herdman M. Subsection IV. Nostocales Castenholz 1898b sensu Rippka, Deruelles, Waterbury, Herdman and Stainer 1979. In: Bone R.D. and Castenholz R.W. eds. Bergey’s Manual of Systematic Bacteriology Vol. One. Springer, 2001, pp.562-539, New York, USA.
13. Galhano V, Santosa H, Oliveirab MM, Gomes-Laranjoa J, Peixotoc F. Changes in fatty acid profile and antioxidant systems in a Nostoc muscorum strain exposed to the herbicide bentazon. Process Biochemistry, 2011, 46, 2152–2162.
14. Meriluoto J, Codd GA. Toxic Cyanobacterial Monitoring and Cyanotoxin Analysis. Abo Akademi University, 2005, p.150, Finland.
15. Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol., 2011, 35(1), pp.87–123.
16. Gupta N, Bhaskar ASB and Rao L. Growth Characteristics and toxin production in batch cultures of Anabaena flos-aqaue: effects of culture media and duration. World Journal of Microbiology & Biotechnology, 2002, 18, 29-35

Thank you for copying data from http://www.arastirmax.com