You are here

Reaktör Yapı Malzemeleri 58,60,61,62,64Ni için Farklı Seviye Yoğunluğu Modelleri ile Reaksiyon Tesir Kesiti Hesaplamaları

Reaction Cross–Section Calculations for the Structural Reactor Materials 58,60,61,62,64Ni with Different Level Density Models

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, reaction cross–section calculations of 58Ni(d,n)59Cu, 60Ni(d,n)61Cu, 60Ni(d,2n)60Cu, 61Ni(d,n)62Cu, 62Ni(d,2n)62Cu, 64Ni(d,2n)64Cu reactions have been done with TALYS 1.6, EMPIRE 3.1 and ALICE/ASH computation codes for reactor structural materials 58,60,61,62,64Ni. Two Component Exciton and Equilibrium models of TALYS 1.6 and Exciton model of EMPIRE 3.1 have been used while Geometry Dependent Hybrid and Weisskopf Ewing models of ALICE/ASH have been selected for calculations. Also, by using Constant Temperature Fermi Gas, Back Shifted Fermi Gas and Generalized Superfluid models of TALYS 1.6, level density calculations for the selected reactions have been completed. All computations have been compared with the experimental values exist in the literature.
Abstract (Original Language): 
Bu çalışmada, 58Ni(d,n)59Cu, 60Ni(d,n)61Cu, 60Ni(d,2n)60Cu, 61Ni(d,n)62Cu, 62Ni(d,2n)62Cu, 64Ni(d,2n)64Cu reaksiyonları için TALYS 1.6, EMPIRE 3.1 ve ALICE/ASH hesaplama kodları kullanılarak reaktör yapı malzemelerinden olan 58,60,61,62,64Ni için reaksiyon tesir kesiti hesaplamaları yapılmıştır. TALYS 1.6’nın İki Bileşenli Eksiton ve Denge modelleri ile EMPIRE 3.1’in Eksiton modelleri kullanılırken ALICE/ASH’in Geometri Bağımlı Hibrit ve Weisskopf Ewing modelleri hesaplamalar için seçilmiştir. Ayrıca, TALYS 1.6’nın Sabit Sıcaklık Fermi Gaz, Geri Kaymalı Fermi Gaz ve Genelleştirilmiş Süperakışkan modelleri ile seviye yoğunluğu hesaplamaları seçilen reaksiyonlar için tamamlanmıştır. Tüm hesaplamalar, literatürde mevcut olan deneysel değerler ile karşılaştırılmıştır.
151
160

REFERENCES

References: 

1. Özdoğan H., Çapalı V., Kaplan A. Reaction Cross–Section, Stopping Power and Penetrating
Distance Calculations for the Structural Fusion Material 54Fe in Different Reactions, J. Fusion
Energ. 2015; 34 (2), 379-385.
2. Kaplan A., Sarpün İ. H., Aydin A., Tel E., Çapalı V., Özdoğan H. (g,2n) Reaction Cross Section
Calculations of Several Even–Even Lanthanide Nuclei Using Different Level Density Models,
Phys. Atom Nucl. 2015; 78 (1), 53-64.
3. Koning A., Hilaire S., Goriely S. TALYS–1.6 A Nuclear Reaction Program, User Manual (NRG,
The Netherlands), First Edition: December 23, 2013.
4. Herman M., Capote R., Carlson B.V., Obložinský P., Sin M., Trkov A., Wienke H., Zerkin V.
EMPIRE: Nuclear reaction model code system for data evaluation. Nucl. Data Sheets 2007; 108
(12), 2655-2715.
5. Broeders C. H. M., Konobeyev A. Yu., Korovin Yu. A., Lunev V. P., Blann M., ALICEIASH -
Precompound and evaporation model code system for calculation of excitation functions, energy
and angular distributions of emitted particles in nuclear reactions at intermediate energies. FZK
7183 (2006).
6. Geant4 Collaboration, 2014. Geant4 User's Guide for Application Developers.
(http://geant4.web.cern.ch/geant4).
7. Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental
Nuclear Reaction Data File). Database Version of October 06, 2015, (http://www.
nndc.bnl.gov/exfor/)

Thank you for copying data from http://www.arastirmax.com