You are here

Sıcaklık Toleranslı Buğday Çeşitlerini Geliştirmek için Çeşitli Buğday ve Mısır Geçiş Yöntemlerini Kullanan Çift Katlı Haploid Buğday Hatlarının Üretiminin Değerlendirilmesi

Evaluating the Production of Doubled Haploid Wheat Lines Using Various Methods of Wheat and Maize Crossing to Develop Heat-Tolerant Wheat Varieties

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, chromosome elimination method was used to develop doubled haploid wheat lines via crosses with maize. The plant materials used included 11, F1 wheat genotypes and maize genotype BC572. In these crosses, the maize plant was used as the male parent. Three methods of haploid production in wheat comprising conventional (A), detached-tiller culture (B) and intermediate (C) techniques were used and compared. The traits such as the number of seeds set, the number of obtained embryos and the number of produced haploid seedlings were studied. Comparisons showed that among various methods of storing wheat spikes, method (C) was better than other techniques in terms of the percentage of seed production, embryo formation and haploid seedling production. Also, in all three methods, the percentage of seed production, the percentage of embryo formation and the percentage of haploid seedling production were equal to 76.84, 25.22 and 51.89. Among the wheat genotypes in all three methods, genotype DH-133 with 87.28 percent seed set and genotype DH-132 with 32.71 percent embryo formation and 65.08 percent haploid seedling production were the best genotypes. A total of 92 doubled haploid lines were produced. In the field evaluations of 86 doubled haploid lines, traits such as growing season, plant height, lodging, kernel yield and 1000 kernel weight were examined. Finally, 3 lines were selected for adaptation and stability testing under heat stress conditions.
Abstract (Original Language): 
Bu çalışmada, mısır ile çaprazlarla çift katlı haploid buğday hatlarının geliştirilmesi için kromozom eliminasyon yöntemi kullanılmıştır. Kullanılan bitki materyalleri 11, F1 buğday genotipleri ve BC572 mısır genotipini içermektedir. Bu çaprazlarda, mısır bitkisi erkek ebeveyn olarak kullanılmıştır. Geleneksel (A), ayrık-yeke kültürü (B) ve ara (C) tekniklerinden oluşan buğdayda haploid üretiminin üç yöntemi kullanılmış ve karşılaştırılmıştır. Elde edilen tohum sayısı, elde edilen embriyo sayısı ve üretilen haploid fideler sayısı gibi özellikler araştırılmıştır. Karşılaştırmalar, buğday sivrilerini muhafaza etmenin çeşitli yöntemleri arasında tohum üretim yüzdesi, embriyo oluşumu ve haploid fide üretimi açısından (C) metodunun diğer tekniklerden daha iyi olduğunu göstermiştir. Ayrıca, her üç yöntemde, tohum üretim yüzdesi, embriyo oluşum yüzdesi ve haploid fide üretimi yüzdesi sırasıyla 76,84, 25,22 ve 51,89'e eşittir. Her üç yöntemdeki buğday genotipleri arasında,% 87.28 tohumluk seti olan DH-133 genotipi % 32,71 yüzdesiyle embriyo oluşumu ve % 65,08 haploid fide üretimi olan DH-132 genotipi en iyi genotiplerdir. Toplam 92 katlanmış haploid çizgi üretilmiştir. 86 çift haploid hattının değerlendirilmesinde, yetiştirme mevsimi, bitki boyu, barınma, çekirdek verimi ve 1000 çekirdek ağırlığı gibi özellikler incelenmiştir. Son olarak, ısı stres koşulları altında adaptasyon ve stabilite testi için 3 hat seçilmiştir.
64
78

REFERENCES

References: 

[1] AyenehGh. A., M. Van-Ginkel, M. P.Reynolds and K.Ammar.2002. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research 79: 173-184.
[2] Arzani A. and N. L.Darvey. 2002. Comparison of doubled haploid lines and their mid- generation progenitors in forage and dual- purpose triticale under greenhouse hydroponic conditions. Euphytica 126: 219-225.
[3] Ahmad J. 2004.Improvements in wheat and maize crossing system of doubled haploid production breed- wheat. Pakistan Higher Education 65-72.
[4] Barclay I.R. 1975. High frequencies of haploid production in wheat (Triticum aestivum) bychromosome elimination. Nature256: 410-41.
[5] Bozorgipour R. 1990. The use of invitro techniques for crop improvement in cereal. Ph.D. Thesis. The University of Cambridge.
[6] Bozorgipour R. and J. W.Snape.1990. The cross ability of Persian wheat cultivars with Hordeum bulbosum and their potential for haploid production. Cereal Research Communication 18: 203–208.
[7] Badaruddin M., M. P. Reynolds and O. A. A.Ageeb.1999.Wheat management in warm environments:effect of organic and inorganic fertilizers, irrigation frequency and mulching. Agronomy Journal 91: 975-983.
[8] Berzonsky W.A., S. L. Klevenand G. D. Leach. 2003. The effects of parthenogenesis on wheat embryo formation and haploid production with and without maize pollination. Euphytica 113: 285-290.
[9] Brazauskas G., I. Paoakinskiene and V.Ruzgas. 2005. Improved approaches in wheat × maize crossing for wheat doubled haploid production. Biologica 4: 15-18. [10] Bakhtiar F., R. Bozorgipour and S.Shahabi. 2006. The production of double haploid wheat lines using planting cultured stem cut in crosses between wheat and maize and evaluation of some crops characterizes. 22: 351-367.
[11] Bakos F.,E. Darko, Z.Ponya and B. Barnabas. 2007. Application of wheat (Triticum aestivumL.) microspore culture and ovaries to raise wheat zygotes in vitro. Acta Biologca Cracoviensis Series Botanica 45:107-110.
[12] Bakos F., K. Jager and B. Barnabas.2005. Regeneration of haploid plants after distant pollination of wheat via zygote rescue. Acta Biologica Cracoviensia 47/1: 167-171.
[13] Broers L. and R. M. Lopez-Atilano. 2008. Components of adult resistance in bread wheat to stripe rust. Proceeding of the 6th International Congress of Plant Pathology, p. 85.
Evaluating the production of doubled
77
[14] Chen X.M. 2007. Epidemiology and control of strip rust (Puccinia striiformis f.sp.tritici) on wheat.
Plant Pathology 27: 314–337.
[15] Dixon J.,H. J. Braun, P.Kosina and J. Crouch. 2009. Wheat facts and figures. CIMMYT Publications
Catalogue95.
[16] Ehdaei B. and Gh. Normohammadi. 2004. Environmental sensitivity and correlation analysis of
yield and its components performance in indigenous tetraploid wheat (durum) of Khoozestan under
favorable and unfavorable environmental conditions. Scientific Agricultural Journal. Shahid
Chamran University, Ahwaz 17: 15-31.
[17] Eriksen L., F. Afshari, M. J. Christiansen, R. A. McIntosh, A. Jahoor and C. R.Wellings. 2008.
Yr32 for resistanceto stripe (yellow) rust present in the wheat cultivar Carstens V.Theoritical
Applied Genetic108: 567–575.
[18] Imtiaz M.,M. G. Cromey, J. Hampton and G. M. J. Hill. 2003. Inheritance of seedling resistance to
stripe rust(Pucciniastriiformisf. sp. tritici) in ‘Otane’ and ‘Tiritea’ wheat (Triticumaestivum). New
Zealand Journal of Crop and Horticultural Sciences 31: 15–22.
[19] Inagaki M. 1997. Technical advances in wheat haploid production using ultra- wide crosses.
JIRCAS Journal4: 51-62.
[20] Jain S. M.,S. K. Sopory and R. E. Velleux.1996. In vitro haploid production in higher plant. Kluwer
Academic Publisher, the Netherland.
[21] Kiepha G. 2010. All about haploid production in wheat. Wadsworth, California 45-118.
[22] Koltunow A.M. and U.Grossniklaus.2007. A developmental perspective. Annual Review of Plant
Biology54: 547-574.
[23] Knox R.E.,J. M. Clarke and R.M. Depaum. 2005. Dicamba condition effects on doubled haploid
production in durum wheat crossed with maize. Plant Breeding 4:289.
[24] Kasha K.J. and K. N. Kao. 1970. High frequency haploid production in barley (Hordeum
vulgareL.).Nature225: 874-876.
[25] Laurie D.A. and M. D. Bennet. 1986. The effect of cross ability loci Kr1 and Kr2 on pollination
frequency in hexaploid wheat × maize crosses. Theoritical Applied Genetic 73: 403-409.
[26] Laurie D.A. and M. D. Bennett. 1987. The production of haploid wheat plants from wheat× maize
crosses. Theoritical Applied Genetic 76: 363-397.
[27] Mehta Y.R. and D. C. Angra. 2000. Somaclonal variation for disease resistance in wheat and
production of diploids through wheat × maize hybrids. Genetical and Molecular Biology 32.
[28] Mochida K.,H. Tsujimoto and T. Sasakuma. 2004. Confocal analysis of chromosome behavior in
wheat x maize zygotes. Genome 47: 224-228.
[29] Ortiz Monasterio J. I. R., S. S. Dhillon and R. A.Fischer.1994.Date of sowing effects on kernel
yield and yield components of irrigated spring wheat cultivars and relationships with radiation and
temperature in Ludhiana, India.Field Crops Research 37: 169-184.
[30] Radmehr M., Gh. A. Ayeneh and A. R. Kajbaf. 1996. Study on the effect of heat stress on
agronomic traits, kernel yield and yield components in twenty five cultivars of bread wheat. Journal
of Plant and Seed 12: 13-23.
[31] Sitch L.A. and J. W. Snap. 1989. The influence of the Hordeum bulbosum and the wheat genotype
on haploid production in wheat. Z. pflanzenzuchtg. 96: 304- 319
[32] Sadasivaiah R.S.,B. R. Orshinsky, S. M.Perkovic and B. L.Beres.2006. Colchicine-induced
chromosome doubling in wheat haploids.Wheat Information Service 93: 1-4.
[33] Sharma H.,Y. Yang and H. Ohm. 2004. An assessment of doubled haploid production in soft red
winter with by wheat maize wide crosses. Cereal Research Communications 30: 269-275.
[34] Sirohi M. and V. K. Khanna. 2008. Influence of age of embryo and method of hormone application
on haploid embryo formation in wheat  maize crosses. 4thInternational Crop Science Congress.
BAKHSHI, BOZORGIPOUR, SHAHRIARI-AHMADI
78
[35] Singh S.,G. S. Sethi and H. K. Chaudhary.2005. Differential responsiveness of winter and spring wheat genotypes to maize-mediated production of haploids.Cereal Research Communications 32: 201-207.
[36] Zenkteler M. D. and W.Nitzsch. 1984. Wide hybridization experiments in cereals. Theoretical Applied Genetics 68: 311-315.
[37] Zheng M. Y. W.,Y. Liu,E. Weng Polle and C. F.Konzak. 2001. Culture of freshly isolated wheat (Triticum aestivumL.) microspores treated with inducer chemicals20 (8):685-690.

Thank you for copying data from http://www.arastirmax.com