You are here

Genetik Algoritma Tabanlı İzleme Reaktif Güçlü Bileşimli Yük Atması için Akıllı bir Yaklaşım

An intelligent Approach to Combinational Load Shedding with Tracing Reactive Power based on Genetic Algorithm

Journal Name:

Publication Year:

Abstract (2. Language): 
Stability of both voltage and frequency in power systems is the basis of the electricity generation. Load shedding is one the last strategies to stabilize a power system. However, the conventional load shedding schemes do not consider the reactive power as a direct participation in load shedding, which is essential for the voltage stability. To fill this gap, we propose a new combinational under frequency load shedding (UFLS) and Under Voltage Load Shedding (UVLS), considering reactive and active power simultaneously, and using non-dominated sorting genetic algorithm (NSGA II) in this paper. The location of bus loads, the reactive power and the active power consumption at each bus are used as GA control variables. This method is tested on the modified IEEE 39-bus system. The results of simulations validate the proficiency of proposed method in stabilizing the frequency and voltage of the power system.
Abstract (Original Language): 
Güç sistemlerinde gerilim ve frekansın dengesi elektrik üretiminin temelini oluşturur. Yük atma, bir güç sistemini stabilize etmek için son stratejilerden biridir. Bununla birlikte, geleneksel yük atma planları, reaktif gücün, gerilim kararlılığı için, gerekli olan yük dökülmesine doğrudan katılım olarak düşünmemektedir. Bu boşluğu doldurmak için, aynı anda reaktif ve aktif güç dikkate alınarak ve frekans yük atma (UFLS) ve Düşük Voltaj Yük Atma (UVLS) altında yeni bir kombinasyonel yöntem önerilmiş ve bu makalede dominant olmayan sıralama genetik algoritması (NSGA II) kullanılmıştır. Veri yolu yüklerinin konumu, reaktif güç ve her veri yolundaki aktif güç tüketimi GA kontrol değişkenleri olarak kullanılır. Bu yöntem, değiştirilmiş IEEE 39-veri yolu sisteminde test edilmiştir. Simülasyonların sonuçları, güç sisteminin frekansını ve voltajını dengelemek için önerilen yöntemin yeterliliğini doğrulamaktadır.
95
108

REFERENCES

References: 

[1] I. Kaffashan, T. Amraee, "Probabilistic undervoltage load shedding using point estimate method", IET Generation, Transmission and Distribution, Vol. 9, No. 15, pp. 2234-2244, Nov. 2015. [2] A.C. Adewole, R. Tzoneva, A. Apostolov, "Adaptive under-voltage load shedding scheme for large interconnected smart grids based on wide area synchrophasor measurements", IET Generation, Transmission and Distribution, Vol. 10, No. 8, pp. 1957-1968, May 2016. [3] G. Shahgholian, M. Ebrahimi-Salary, "Effect of load shedding strategy on interconnected power systems stability when a blackout occurs", International Journal of Computer and Electrical Engineering, Vol. 4, No. 2, pp. 212-216, April 2012. [4] A. Mahari, H. Seyedi, "A wide area synchrophasor-based load shedding scheme to prevent voltage collapse", International Journal of Electrical Power and Energy Systems, Vol. 78, pp. 248–257, June 2016. [5] A. Estebsari, E. Pons, T. Huang, E. Bompard, "Techno-economic impacts of automatic under voltage load shedding under emergency", Electric Power Systems Research, Vol. 131, pp. 168–177, Feb. 2016. [6] A. Ahmadi, Y. Alinejad-Beromi, "A new integer-value modeling of optimal load shedding to prevent voltage instability", International Journal of Electrical Power and Energy Systems, Vol. 65, pp. 210-219, Feb. 2015.
An intelligent Approach to Combinational
108
[7] U. Rudez, R. Mihalic, "Analysis of under frequency load shedding using a frequency gradient", IEEE Trans. on Power Delivery, Vol. 26, No. 2, pp. 565-575, April 2011. [8] Y.Y. Hong, P. H. Chen, "Genetic-based under-frequency load shedding in a stand-alone power system considering fuzzy loads", IEEE Trans. on Power Delivery, Vol. 27, N0. 1, pp. 87-95, Jan. 2012. [9] Y.Y. Hong, S. F. Wei, "Multi-objective under-frequency load shedding in an autonomous system using hierarchical genetic algorithms", IEEE Trans. on Power Delivery, Vol. 25, No. 3, pp. 1355-1362, July 2010. [10] H. Alkhatib, J. Duveau, "Dynamic genetic algorithms for robust design of multimachine power system stabilizers", International Journal of Electrical Power and Energy Systems, Vol. 45, pp. 242–251, 2013. [11] W.P. Luan, M.R. Irving, J.S. Daniel, "Genetic algorithm for supply restoration and optimal load shedding in power system distribution networks", IET Generation, Transmission and Distribution, Vol. 149, No. 2, pp. 145-151, March 2002. [12] M. Haomin, K. Wing Chan, L. Mingbo, "An intelligent control scheme to support voltage of smart power systems", IEEE Trans. on Power Industrial Informatics, Vol. 9, No. 3, pp. 14041414, Aug. 2013. [13] F. Daneshfar, H. Bevrani, "Load-frequency control: a GA-based multi-agent reinforcement learning", IET Generation, Transmission and Distribution, Vol. 4, No. 1, pp.13-26, 2010. [14] A. Saffarian, M. Sanaye-Pasand, "Enhancement of power system stability using adaptive combination-al load shedding methods", IEEE Trans. on Power Systems, Vol. 26, No. 3, pp. 1010-1020, Aug 2011. [15] A.P. Ghaleh, M. Sanaye-Pasand, A. Saffarian, "Power system stability enhancement using a new combinational load shedding algorithm", IET Generation, Transmission and Distribution, Vol. 5, No. 5, pp. 551-560, May 2011. [16] J. Tang, J. Liu, F. Ponci, A. Monti, "Adaptive load shedding based on combined frequency and voltage stability assessment using synchrophasor measurements", IEEE Trans. on Power Systems, Vol. 28, No. 2, pp. 2035-2047, May2013. [17] P.M. Joshi, "Load shedding algorithm using voltage and frequency data", Clemson University, Dec. 2007. [18] W. Qin, P. Wang, X. Han, X. Du, "Reactive power aspects in reliability assessment of power systems", IEEE Trans. on Power Systems, Vol. 26, No. 1, pp. 85-92, Feb. 2011. [19] R. Zarate, "Optimal power flow with stability constrains", PhD Thesis at Department of Electrical Engineering, Ciudad Real, July 2010. [20] P.M. Anderson, M. Mirheydar, "A low-order system frequency response model", IEEE Trans. on Power Systems, Vol. 5, No. 3, pp. 720-729, August 1990. [21] D.L.H. Aik, "A general-order system frequency response model incorporating load shedding: analytic modeling and applications", IEEE Trans. on Power Systems, Vol. 21, No. 2, pp. 709-717, May 2006. [22] IEE Std., "IEEE guide for the application of protective relays used for abnormal frequency load shedding and restoration", IEEE Std., C37.117-2007, Aug. 2007.

Thank you for copying data from http://www.arastirmax.com