You are here

Perde duvarlı binaların deprem etkileri altındaki davranışlarının modellenmesi ve simülasyonu

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Buildings with no symmetry in plan have much more complicated behavior under earthquake effects than symmetric buildings. There is interaction between lateral translation and rotational displacement. The irregular distribution of the main resisting components, such as columns and shear walls causes complications in understanding the nonlinear effects under cyclic loadings during earthquakes. The buildings with torsion response represent the main topic of many current investigations. However, despite this volume of research, there is no established model that describes adequately the behavior of the reinforced concrete shear wall systems. Thus, applications in use are subjected to critical assessments. In this study, the three-dimensional behavior of the shear-wall structures under earthquake forces are examined with regards to the nonlinear behavior of concrete and the parameters of the structures exposed to seismic motion for assessment. A three story reinforced concrete shear-wall building is analyzed using the ANSYS software. The scaled model (¼) building was subjected to shaking table tests with Saclay, France. The project was led by Atomic Energy Agency (CEA Saclay, France). The results of the finite element method and experiments are examined in this the study. For response history analysis, micro-modeling is preferred since this allows inclusion of nonlinear effects of concrete and steel in analysis. The behavior parameters, (force, displacement, strain), of analytical results obtained by modeling compared with the values were measured in experiments to test the validity of models and simulation. The model building is a U shaped 1/4 scaled shear- wall building which is designed according to conventional French nuclear design practice, with a peak ground acceleration for the response spectrum anchored to 0.2 g. ANSYS software is used for micro modeling. Analyses are done in two phases. Phase 1 is a benchmark study. Phase 2 is a parametric study. In the numerical model (Figure 3 and 6), SOLID 65 element type is used (Figure 4) which allows the smeared modeling. For material non-linearity; William-Warnke, Drucker- Prager material models and MISO (Multilinear Isotropic Plasticity) are used for concrete modeling in Phase 1. In Phase 2; only MISO changed to the MKIN (Multi-linear Kinematic Plasticity). In Phase 1, time history analyses of the specimen are done before the experimental tests and then the results of the numerical model are compared with the experimental results. Three real and nine synthetic earthquake ground motions are used in the Phase 1. There are 12 analysis results for Phase 1 in this paper (Table 4). According to the comparison of the Phase1 numerical model and the experimental results of the specimen; numerical model results are consistent with the experimental results in terms of the third floor displacements (Figure 9).However, numerical model’s modal analysis results are higher than the experimental results (Figure 8) and the third floor response spectra (Figure 10) are higher in numerical model than the experimental results. This shows that the numerical model needs refinement. In Phase 2, the model is refined by increasing the finite elements in the model (Figure 6). Phase 2 is a parametric study which looks for the effects of the materials consist the building. In this paper only the modulus change is studied and the results show that this parametric study should be expanded (Figure 11 and 12). As a conclusion, the numerical model of the specimen can estimate the displacements in accuracy but needs improvement. In this study, the refinement is done by decreasing the meshing size. The system is so stiff that the drift responses are so small. The parametric study will be expanded to be able to understand the effects of the materials.
Abstract (Original Language): 
Rijitlik ve kütle simetrisi bakımından “düzensiz” olarak adlandırılan binaların sayısı fazladır. Bu durum asimetrik plana sahip sistemlerin deprem etkileri altındaki davranışının hesaba doğru dâhil edilmesini gerektirmektedir. Simetrik olmayan plana sahip yapılar deprem hareketleri altında simetrik olanlara oranla daha karmaşık bir davranış gösterirler. Öteleme ve dönme hareketleri arasında etkileşme mevcuttur. Yapıyı meydana getiren kolon, perde duvar gibi ana taşıyıcı elemanların plan içindeki düzensiz dağılımı sistemin deprem gibi tekrarlanan yükler altındaki elastik sınır ötesi davranışını belirlemede zorluklara yol açabilmektedir. Burulma davranışı bulunduran yapılar günümüzde yapılan birçok araştırmanın ana konusunu teşkil etmektedir. Ancak yapılan araştırmalara rağmen betonarme perde duvarlı sistemlerin davranışını doğrudan tanımlayan uygulaması kolay somut metotlar bulunmamaktadır. Bu da uygulamalarda kullanılan metotların kritik bir değerlendirmeye tabi tutulmasınışart kılmaktadır. Bu çalışmada perde duvarlı yapıların deprem kuvvetleri altındaki üç boyutlu davranışı, betonun elastik ötesi davranışı ve depreme maruz kalmış yapıların değerlendirmesine yönelik parametrelerin ışığı altında incelenmektedir. Çalışmada sonlu elemanlar metoduna dayanarak ANSYS programı ile perde duvarlardan teşkil edilmiş üç katlı betonarme bir binanın davranışı incelenmektedir. Modellemesi yapılan bina Fransa Saclay’de yer alan Atom Enerji Kurumu’nun (CEA) yürüttüğü proje kapsamında ¼ ölçekli olarak sarsma tablası deneylerine tabi tutulmuştur. Deney sonuçları ile yapının sonlu elemanlar yöntemi ile yapılan modellemesinin ne kadar uyumlu olduğu çalışmanın bu bölümünde irdelenmektedir. Zaman tanım alanında hesap için betonun ve çeliğin lineer ötesi davranışını hesaba katan mikro modelleme tercih edilmektedir. Analitik modelleme sonucu elde edilen davranış parametreleri (kuvvet, yer değiştirme, birim uzama), deneylerde ölçülmüş olan değerler ile karşılaştırılarak model ve simülasyonun geçerliliği incelenmektedir.

REFERENCES

References: 

ANSYS®
Akademik versiyon, v.12
Federal Emergency Management Agency
(FEMA) (2000), Prestandard and commentary for
the seismic rehabilitation of buildings, FEMA-
356, Washington, DC.
IAEA-TECDOC, (2008). Safety Significance of A
Type of Seismic Input Motions And
Consequences on Nuclear Industry Practice,
International Atomic Energy Egency, Vienna,
Austria.
Ile, N. Xuan-Huy Nguyen; P. Kotronis; J. Mazars; J.
M. Reynouard (2008). Shaking Table Tests of
Lightly RC Walls: Numerical Simulations,
Journal of Earthquake Engineering, 12:849–878.
Kabeyasawa, T., Otani, S., Aoyama, H. (1983)
Nonlinear Earthquake Response Analyses of R/C
Wall-Frame Structures, Transactions, Japan
Concrete Institute, Vol. 5, pp. 277-284.
Kazaz, I., Yakut, A., Gülkan, P. (2006). Numerical
simulation of dynamic shear wall tests: A
benchmark study, Computers and Structures,
84(8-9), 549–562.
Kim, T.W. (2004). Performance assessment of
reinforced concrete structural walls for seismic
loads, PhD. Dissertation submitted to University
of Illinois at Urbana Champaign, Urbana,
Illinois.
Kwak, H.-G., Kim, D.-Y. (2004). FE analysis of RC
shear walls subject to monotonic loading,
Magazine of Concrete Research, 56(7), 387-403.
Lefas, I.D., Kotsovas, M.D., Ambraseys, N.N.,
(1990). Behavior of reinforced concrete structural
walls: strength, deformation characteristics, and
failure mechanism, ACI Structural Journal,
87(1), 23-31
Linde, P. (1993). Numerical modeling and capacity
design of earthquake-resistant reinforced
concrete walls, Institute of Structural
Engineering, Swiss Federal Institute of
Technology (ETH), Zurich, Report No. 200.
OECD/NEA/CSNI (1996). Seismic shear wall ISP
NUPEC's seismic ultimate dynamic response
test -Comparison Report. NEA/CSNI/R(96)10,
OECD/GD(96)188.
Orakçal, K., Wallace, J.W., (2006). Flexural
Modeling of Reinforced Concrete Walls –
Model Calibration, ACI Structural Journal,
103(2), 196 – 206.
Palermo, D., Vecchio, F.J. (2007). Simulation of
cyclically loaded concrete structures based on
the finite-element method, 133(5), 728-738.
Sozen, M. A., and Moehle, J. P. (1993). Stiffness
of Reinforced Concrete Walls Resisting InPlane Shear. Electric Power Research Institute,
EPRI Research Project 3094-1.
Vallenas, J.M., Bertero, V.V., Popov, E.P. (1979)
Hysteretic behavior of reinforced concrete
structural walls, Report No. UCB/EERC-79/20,
Berkeley, University of California.
Wallace, J.W., Moehle, J.P. (1992). Ductility and
Detailing Requirements of Bearing Wall
Buildings, J. Struct. Engrg., 118(6), 1625-1644.

Thank you for copying data from http://www.arastirmax.com