You are here

Zambak yaprağı imgelerinde pas hastalıklarının GLCM tabanlı sınıflandırma yöntemleri ile tespiti

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Crop diseases can affect yield and/or quality of the harvested commodity. This can influence profitability and raise the risks of farming. When the diseases are estimated early, the yield will increase by taking measures thanks to farmers. The rust disease is one of the most major crop diseases that affect crop yield. Rust disease can be defined as a fungus; it makes the crops weak by blocking food to the roots and leaves. It is named “rust” disease, since the spots on the leaves look like grain of rust which is coloured in the range of yellow to bright orange, to brown or red. Some spots have a planar surface, while others are raised. This disease is infectious amongst vegetations but not between flowers and vegetables. The rust firstly seems bright orange. Then, it turns to dark brown as it proceeds. The infected leaves drop off and the main stems will show diseased spots as it spreads. Finally, the crops will die (Dauber 2008). In general, rust disease can be found in three types of planting areas. These are yellow rust, brown rust and black rust. The most common type, called a leaf or brown rust. This disease is usually seen in the wet type long leaves. Another common type of rust disease in plants is called stripe or yellow rust. It is seen most frequently in the leaves. The last common type of rust is called black rust and which is the most destructive kind of rust disease and it causes about 50 % losses per month of crop production efficiency (Çoklu2011). In this paper, daylily leaf images are used as crop sample and derived from different agricultural sites under expert control and daylily rust disease is estimated by using GLCM based different classifier techniques. Before classification process, the features are extracted from images with using Gray Level CoOccurrence Matrix (GLCM) method and 7 parameters are derived by this method for each digital camera image. These parameters are contrast, correlation, energy, homogeneity, entropy, standard deviation and mean for first texture feature vector. Then, the extracted feature vectors are applied to different type of classifiers and these vectors are used as inputs in classification systems. The Multilayer Perceptron neural network (MLP) , kNearest Neighbor (k -NN) and Least Squares Support Vector Machine (LS-SVM) classifiers have been chosen for learning and testing of 53 image data where 32 of them belongs to class I (normal), 21 of them belongs to class II (rust diseased). Different structures of networks are tested and the results are compared in terms of testing performance for each network model. Artificial Neural Network (ANN) techniques are non-linear statistical data modeling or decision making tools. They can be used to model complex relationships between inputs and outputs or to find patterns in data. In pattern recognition, the knearest neighbor algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space. A Least Squares Support Vector Machine (LS-SVM) is a concept in computer science for a set of related supervised learning methods that analyze data and recognize patterns, used for classification and regression analysis .These methods were used for classification system in this paper. Finally, the best performance was observed as 88.90% in the k-NN and MLP network with 7-5-1 structure. Our results suggest this method is an accurate and efficient means of estimating daylily rust disease.
Abstract (Original Language): 
Bitkilerdeki hastalÕklar, hasadÕ ve dolayÕsÕyla verimi etkilemektedir. HastalÕklarÕn önceden tespiti, çiftçilerin alaca÷Õ önlemler ile verimi artÕracaktÕr. Verimi etkileyen önemli hastalÕklarÕn baúÕnda pas hastalÕ÷Õ gelmektedir. Bu çalÕúmada bitki örne÷i olarak zambak çiçe÷ine iliúkin yaprak imgeleri kullanÕlarak, bitkide pas hastalÕ÷ÕnÕn tespiti amaçlanmÕútÕr. ÇalÕúmada kullanÕlan imgeler, zirai uygulamalarla ilgili farklÕ zirai veri tabanlarÕndan bir uzman yardÕmÕyla elde edilmiútir. Bu çalÕúmada, GLCM tabanlÕ farklÕ sÕnÕflandÕrÕcÕ teknikleri kullanÕlarak, zambak yapra÷Õnda oluúan de÷iúimin pas hastalÕ÷Õ olup olmadÕ÷ÕnÕ tespit eden bir sistem tasarlanmÕútÕr. Zambak yapra÷Õna iliúkin imgelerin gri seviyeli eú-oluúum (GLCM) matrisleri elde edilip, matrislerin kontrast, korelasyon, enerji, homojenlik ve entropi de÷erleri hesaplanmÕútÕr. øki boyutlu imgelere iliúkin matrislerden hesaplanan ortalama ve standart sapma de÷erleri öznitelik vektörüne eklenerek, her imge için toplamda 7 parametre içeren öznitelik vektörü oluúturulmuútur. Elde edilen öznitelik vektörleri sÕnÕflandÕrÕcÕlar için giriú e÷itim kümesi olarak kullanÕlmÕú ve test kümesi ile performansÕ en iyi olan sistem belirlenmeye çalÕúÕlmÕútÕr. Bu sistemlerde sÕnÕflandÕrÕcÕ olarak Çok KatmanlÕ AlgÕlayÕcÕ, k-En YakÕn Komúu (k-NN) ve en küçük kareler Destek Vektör Makinesi (LS-SVM) yöntemleri kullanÕlmÕútÕr. Zambak çiçe÷i yaprak imgeleri, 32 sa÷lÕklÕ (normal) imge ve 21 hastalÕklÕ imge olmak üzere toplam 53 örnekten oluúur ve iki (1-Normal, 2-HastalÕklÕ) grupta sÕnÕflandÕrÕlmÕútÕr. HastalÕ÷Õn tespiti amacÕyla yapÕlan sÕnÕflandÕrma çalÕúmalarÕ sonucunda, en iyi performansa %88.9 baúarÕ ile GLCM tabanlÕ k-NN ve çok katmanlÕ yapay sinir a÷ÕnÕn (7-5-1) ulaútÕ÷Õ gözlemlenmiútir. Elde edilen sonuçlar önerilen yöntemin pas hastalÕ÷ÕnÕ tespit etmede do÷ru ve etkili çalÕútÕ÷ÕnÕ göstermiútir.
95-105

REFERENCES

References: 

Acar, E., Özerdem, M.S. ve Akpolat, V., (2011).
Forecasting Diabetes Mellitus with Biometric
Measurements, International Archieves of
Medical Research, 1, 1, 28-42.
Anonim, (2008). Daylily Rust. Eriúim:
[http://massnrc.org/pests/pestFAQsheets/daylilyr
ust.html] Eriúim Tarihi: 21.12.2011.
Bauer, S., Korc, F. ve Förstner W., (2011). The
potential of automatic methods of classi¿cation
to identify leaf diseases from multispectral
images. Precision Agriculture, 12, 3,361-377.
Bergeron, S., (2009). Daylily Rust Information Page.
Eriúim:[http://web.ncf.ca/ah748/rust.html].
Eriúim Tarihi: 21.12.2011.
Coakley, S. M., Boyd, W. S. ve Line, R. F., (1982).
Statistical Models for Prediction of Stripe Rust
on Winter Wheat in the Pacific Northwest.
Phytopathology, 72, 539-1542.
Çoklu, O., (2011). Bu÷day Pas HastalÕklarÕ. Eriúim:
[http://www.bahcebitkileri.org/bugday-pas
hastaliklari.html]. Eriúim Tarihi: 21.12.2011.
Dauber, R., (2008). Rust Disease on Tomato Plants.
Eriúim:[http://www.ehow.com/about_6514767_rust-
disease-tomato-plants.html], Eriúim Tarihi: 21.12.2011.
Eddy,R.,(2009). Logistic Regression Models to
Predict Stripe Rust Infections on Wheat and
Yield Response to Foliar Fungicide Application
on Wheat in Kansas. Master thesis, Kansas State
University, Department of Plant Pathology
College of Agriculture, Kansas. 53-67.
Hilavin,ø., Kuntalp, M. ve Kuntalp, D., (2011).
Aritmilerin Spektral Özellikler KullanÕlarak En
YakÕn K Komúu Metoduyla SÕnÕflandÕrÕlmasÕ.
2011 IEEE 19th Signal Processing and
Communications Applications Conference (SIU),
20-22 Nisan 2011, Antalya. S,411-414.
Horng, M. H. , Huang, X. J. ve Zhuang, J.H.,
(2003).Texture Feature Coding Method for
Texture Analysis and It’s Application. Journal of
Optical Engineering, 42 ,1, 228-238.
Kaymaz, E.2007. Yapay ba÷ÕúÕklÕk sistemi tabanlÕ kNN sÕnÕflandÕrma algoritmasÕ ile protein
örüntülerinin hücredeki yerleúim yerlerinin
belirlenmesi. Yüksek Lisans tezi, FÕrat
Üniversitesi, Fen Bilimleri Enstitüsü, ElazÕ÷.45.
Lei, Y.ve Shuqin, L., (2010). App. of principal
component analysis of wheat stripe rust.
[http://en.cnki.com.cn/Article_en/CJFDTOTALSJSJ201002061.htm]. Eriúim Tarihi: 21.12.2011.
Li, J., Gao, L. ve Shen, Z.,(2010). Extraction and
analysis of digital images feature of three kinds
of wheat diseases. 2010 3rd Int Congress on
Image and Signal Processing (CISP2010), 16-18
Oct. 2010,Yantai. 2543 – 2548.
Li, X., Nie, P., Jun,Z. and He,Y., (2011). Using
wavelet transform and multi-class least square
support vector machine in multi-spectral imaging
classification of Chinese famous tea. Expert
Systems with Applications 38,9,11149-11159.
Luaces,O., Rodrigues, L., Meira, C. ve Bahomende,
A.,(2011). Using nondeterministic learners to
alert on coffee rust disease. Expert Systems with
Applications ,38,14276-14283.
Moshou, D., Bravo, C., West, J., Wahlen, S.,
McCartney, A. ve Ramon, H., (2004). Automatic
detection of ‘yellow rust’ in wheat using
reÀectance measurements and neural Networks.
Computers and Electronics in Agriculture, 44,
2004, 173–188.
Orhan, U., Hekim, M., Özer, M., 2010. EEG
øúaretlerinin Çok-katmanlÕ AlgÕlayÕcÕ YSA
Modeli ile SÕnÕflandÕrÕlmasÕnda AyrÕklaútÕrma YaklaúÕmÕ.
15. BøYOMUT 2010, 21-24 Nisan 2010, Antalya. s1-3.
Özmetel, E. 1996, Bilgisayarda Ö÷renme ve Yapay
Nöral A÷larÕ. Otomasyon, YayÕn No:45, s134-140.
Roumi, M.2009. Implementing Texture Feature
Extraction Algorithms on FPGA. Master thesis,
Delft University of Technology, Faculty of
Electrical Engineering, Mathematics and
Computer Science,Delfth,Netherlands.15.
Römer, C., Bürling,K., Hunsche, M., Rumpf,T.,
Nogave Plümer, L. Robust fitting of fluorescence
spectra for pre-symptomatic wheat leaf rust
detection with SVMs. Computers and Electronics
in Agriculture, 79, 2011, 180–188.
Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-
C., Dehne,H.-W. ve Plümer,L.2010. Early
detection and classi¿cation of plant diseases with
SVMs based on hyperspectral. Computers and
Electronics in Agriculture, 74, 1, 91-99.
Sheng, H., Zhang,L., Tang,J.,Sun,Y. Ve Zhao,L
.2011.Quality, Reliability, Risk, Maintenance,
and Safety Engineering (ICQR2MSE),17-19 June
2011,Xi-an.673-677.
Suyskens,J., Gestel,T., Brabender,J., Moor, B. ve
Vandewalle J.2002. Least Squares Support
Vector MachÕnes. World Sci Publishing Co. Pte.
Ltd, YayÕn No: (ISBN 981-238-151-1), s71. Leuven.
Wang, H. ve Ma, Z.2011. Prediction of Wheat Stripe
Rust Based on SVM. 2011 Seventh International
Conference on Natural Computation, 26-28 July
2011, Shangai.378-382.

Thank you for copying data from http://www.arastirmax.com