You are here

Geçici durum sürecini dikkate alan hata algılama metodu ve uygulamaları

Journal Name:

Publication Year:

Abstract (2. Language): 
The purpose of Fault Detection (FD) is to determine the occurrence of an abnormal event in a process. The early detection of faults may help to avoid system breakdowns and product deterioration. Fault detection algorithms and their applications to a wide range of industrial processes have been the subject of intensive research over the past two decades (Isermann, 2006; Karami vd., 2010). The methods on Fault Detection and Diagnosis (FDD) can be divided into two main groups, the modelbased and data driven-based methods (Venkatasubramanian vd., 2003a; 2003b; 2003c). Model-based FD methods are based on comparing the behaviors of the actual plant and a mathematical model of the system (Hammouri vd., 2010). The method uses signal residuals, which indicate changes between the real process and the process model. However, obtaining a complete and robust mathematical model is difficult due to process complexity and dimension. The data-based FD methods can be used to solve these problems (Venkatasubramanian vd., 2003a). The advantage of these methods is that the model of the system is not necessary to know in order to make a conclusion on a fault appearance. This means that the method is appropriate for the systems that cannot be easily or ever modeled, or for which the model is nonlinear, hybrid, or structurally ill-posed. For the data-based methods, only the availability of large amount of historical process data is needed (Venkatasubramanian vd., 2003a). One of the most common multivariate statistical process control (MSPC) methods used for this purpose is principal component analysis (PCA) (Camacho vd., 2009). PCA method initially proposed by Pearson (1901) and later developed by Hotelling (1947). PCA method is used to extract a few independent components from highly correlated process data and use the components to monitor the process operations. Typically, two major monitoring indices are calculated, the squared prediction error (SPE) and the Hotteling T2 index. An abnormal situation will cause at least one of the two indices to exceed the control limit. Conventional PCA methods for the fault detection have largely focused on the steady-state operations and are not directly applicable during the transitions (Jia vd., 2010). Applying a PCA method to such a transient process can produce excessive number of false alarms or missed detection of process faults, that is significantly compromise the reliability of the monitoring system. Therefore, a novel PCA fault detection method is required that explicitly caters to the non-steady states and wide operating condition changes during transitions. In the present article, a new monitoring approach is proposed based on PCA method that covers both the steady-state and transient operating conditions for the stationary signals with the variance sensitive adaptive threshold (Tvsa). The method is implemented and validated experimentally on a process control system using on-line data. Experimental test confirms the fact that the proposed method is applicable and effective for both the steady-state and transient operations and gives early warning to operators.
Abstract (Original Language): 
Mühendislik alanına giren sistemlerdeki hataların tespiti ve yalıtımı çok büyük bir öneme sahiptir. Sistemlerdeki hatanın erken tespit edilmesi, ürün bozulması, performans düşmesi, makinenin kendi kendine veya insan sağlığına zarar vermesi ve hatta insanların yaşamını kaybetmesi gibi meydana gelebilecek arzu edilmeyen durumlardan kaçınmak için çok kritik bir rol oynamaktadır. Ayrıca hatalı bölümün doğru ve hızlı teşhisi, onarım sırasında doğru müdahalelerin yapılmasını ve acil durumlarda en uygun kararların verilmesini kolaylaştırır. Böylece işletmelerin güvenliği artarken, aksama süreleri ve üretim maliyetleri düşer. Kullanılan hata algılama metodları modele dayalı ve veriye dayalı (istatistiksel) olmak üzere genel olarak ikiye ayrılmaktadır. Herbir metod kendi içerisinde gruplara ayrılmaktadır. Çok değişkenli İstatistiksel Proses Kontrol (ÇİPK) yaklaşımları endüstriyel süreçlerde performans izleme, hata tespiti ve teşhisinde çok yaygın olarak kullanılmaktadır. Klasik ÇİPK yaklaşımları, Temel Bileşen Analizi (TBA) gibi gizli değişken (latent variable) yansıtma metotlarına dayanmaktadır. Bu metotlar yalnızca sistemlerin kararlı durumlarını (steady-state) dikkate alarak çalışmaktadır. Geçici durum (transient-state) süreçlerinin de dikkate alındığı uygulamalarda bu geleneksel TBA metotları gözetim sistemlerinin güvenilirliğini riske atacak yanlış alarm sinyalleri üretmektedir. Bu çalışmada geçici süreçlerin sebep olduğu bu yanlış alarm sinyallerini giderecek varyansa duyarlı uyarlamalı eşik tabanlı TBA algoritması önerilmiş ve proses kontrol sistemine deneysel olarak uygulanmıştır. Elde edilen sonuçlar, önerilen algoritmanın proses kontrol sistemlerinde geçici süreçlerin dahil edildiği durumlarda da başarı sağladığını göstermiştir.
41-48

REFERENCES

References: 

Alkaya, A., ve Eker, İ., (2011). Variance sensitive
adaptive threshold-based PCA method for fault
detection with experimental application, ISA
Transactions, 50, 287–302.
Angeli, C., (2004). On-Line Fault Detection
Techniques for Technical Systems: A Survey,
International Journal of Computer Science &
Applications, 1, 12 – 30.
Antory, D., (2007). Application of a data-driven
monitoring technique to diagnose air leaks in an
automotive diesel engine: A case study.
Mechanica Systems and Signal Processing, 21,
795–808. 48
A. Alkaya, İ. Eker
Bhattacharya, R., ve Waymire, E. C., (1990).
Stochastic processes with applications, Wiley,
New York.
Camacho, J., Pico, J., ve Ferrer, A., (2009). The best
approaches in the on-line monitoring of batch
processes based on PCA: Does the modeling
structure matter?, Analytica Chimica Acta, 642,
59–68.
Eva, P. E., (1996). The MATLAB handbook.
Addison-Wesley, Harlow.
Hammouri, H., ve Tmar, Z., (2010). Unknown input
observer for state affine systems: A necessary
and sufficient condition, Automatica, 46, 2, 271–
278.
Hotelling, H., (1947). Multivariate quality control
illustrated by the testing of sample bombsights.
In: Eisenhart C, Hastay MW, ve Wallis WA
(Eds.), Selected techniques of statistical analysis,
McGraw-Hill, New York.
Isermann, R., (2006) Fault-Diagnosis Systems: An
Introduction from Fault Detection to Fault
Tolerance, Springer, Berlin.
Jia, M., Chu, F., Wang, F., ve Wang, W., (2010).
On-line batch process monitoring using batch
dynamic kernel principal component analysis,
Chemometrics and Intelligent Laboratory
Systems, 101, 110–122.
Karami, F., Poshtan, J., ve Poshtan, M., (2010).
Detection of broken rotor bars in induction
motors using nonlinear Kalman filters, ISA
Transactions, 49, 2, 189–195.
Pearson, K., (1901). On lines and planes of closest
fit to systems of points in space, Philosophical
Magazine SeriesB 2, 559–572.
Venkatasubramanian, V., Rengaswamy, R., Yin, K.,
ve Kavuri, S. N., (2003a). A review of process
faults detection and diagnosis. Part I:
Quantitative model-based methods, Computers
& Chemical Engineering, 27, 293–311.
Venkatasubramanian, V., Rengaswamy, R., Yin, K.,
ve Kavuri, S. N., (2003b). A review of process
faults detection and diagnosis. Part II: Qualitative
models and search strategies, Computers and
Chemical Engineering, 27, 313–326.
Venkatasubramanian, V., Rengaswamy, R., Yin, K.,
ve Kavuri, S. N., (2003c). A review of process
faults detection and diagnosis. Part III: Process
history based methods, Computers and Chemical
Engineering, 27, 327–346.
Wang, R., (2003). Statistical theory,: Xian Jiaotong
University Press, China.
Wold, S., Geladi, P., Esbensen, K., ve Ohman, J.,
(1987). Multi-way principal components and
PLS-analysis, Journal of Chemometrics, 1, 41–
56.
Xiao, F., Wang, S., Xu, X., ve Ge, G., (2009). An
isolation enhanced PCA method with expertbased multivariate decoupling for sensor FDD in
air-conditioning systems, Applied Thermal
Engineering, 29, 712 – 722.

Thank you for copying data from http://www.arastirmax.com