You are here

Gözler açık/kapalı durumunda EEG bantlarındaki frekans değişiminin Güç Spektral Yoğunluğu ile belirlenmesi

Determination of changes in EEG bands frequencies with PSD in eyes open/closed conditions

Journal Name:

Publication Year:

Abstract (2. Language): 
Electroencephalogram (EEG) sign is extensively used to obtain the information about the electrical activities in brain. In this study, the changes of the power spectral density (PSD) in the EEG data during eyes-closed and eyes-open states were analyzed. In the analysis, the interval of dominant frequencies was roughly determined with different approaches. The EEG signal is separated into sub bands with wavelet transform (WT). The Welch method which is the one of the classical methods was used for PSD prediction and the Burg and Yule- Walker parametric methods were used also for PSD prediction of the EEG signal. It was observed that the alpha rhythm is dominant band in the eyes closed state compared to eyes open state. It is also seen that the differences between the signals can be reveal with parametric methods compared to nonparametric methods.
Abstract (Original Language): 
Elektroensefalogram (EEG) işareti, beyindeki elektriksel aktivite hakkında bilgi edinmek amacıyla yaygın olarak kullanılmaktadır. Bu çalışmada, gözün açık ve kapalı durumunda EEG de görülen değişimin güç spektral yoğunluğu (GSY) incelenmiş olup, frekans değişiminin hangi aralıkta etkin olduğu farklı yaklaşımlar ile kabaca belirlenmiştir. Belirlenme sürecinde dalgacık yöntemi (DD) kullanılarak, işaret alt bandlarına ayrıştırılmıştır. GSY tahmini için klasik yöntemlerden Welch metodu ile işaret modelleme sürecini kullanan parametrik yöntemlerden Burg ve Yule-Walker yöntemleri kullanılmıştır. Gözler açık durumuna göre gözler kapalı iken EEG’de alfa ritminde yer alan frekansların baskın olduğu görülmüştür. Güç spektral yoğunluk hesabında, parametrik yöntemler ile işaretlerdeki var olan farklılıkların daha belirgin görülebilmesine olanak sağladığı görülmüştür
131
138

REFERENCES

References: 

Adeli, H., Zhou, Z. and Dadmehr N., “Analysis of
EEG records in an epileptic patient using wavelet
transform”, Journal of Neuroscıence Methods,
Vol 123, Iss 1, pp. 69-87, 2003.
Sharma,R.and Pachori,R.B., “Classification of
epileptic seizures in EEG signals based on phase
space representation of intrinsic mode functions”,
Expert Systems with Applications 42, 1106–1117, 2015.
Crespel,A. Gélisse,P., Bureau M. and Genton,P.,
“Atlas of Electroencephalography”, Third ed., J
LibbeyEurotext, Paris, 2006
Başar, E., Eroglu C.,Karaka,S., Schurmann, M.
“Brain oscillations in perception and memory”,
International Journal of Psychophysiology, 35p.
95, 124, 2000.
Başar, E, Güntekin, B.,Tülay,E. And Yener ,G.,G.
“Evoked and event related coherence of
Alzheimer patients manifest differentiation of
sensory–cognitive networks”, Brain Research
13, 57, 79 – 90, 2010
Correan, G., A., Orosco, O., Diez P., Laciar E.,
“Automatic detection of epileptic seizures in
long-term EEG records”, Computers in Biology
and Medicine, 2015
Imperatoria, C., Farina, B., Quintiliania, M. I.,
Onofri, A., Gattinarab, P.C., Leporeb, M.,
Gnonic, V., Mazzucchic, E. , Contardia, A. and
Marca, G. D., “Aberrant EEG functional
connectivity and EEG power spectra inresting
state post-traumatic stress disorder: a sloreta
study” Biological Psychology 102, 10–17, 2014.
Soroko, S.I., Shemyakina, N. V., Nagornova, Zh. V.,
and Bekshaev, S. S. “Longitudinal study of EEG
frequency maturation and power changesin
children on the Russian North”, International
Journal of Developmental Neuroscience 38, 127–
137, 2014.
Bridwell, D. A.,Wu, L., Eichele, T. and Calhoun, V.
D.,“The spatiospectral characterization of brain
networks: using concurrent EEG spectra and
fMRI maps” Neuro Image 69, 101–111, 2013.
Albada, S.J.V., Kerr, C.C., Chiang, A.K.I.,Rennie,
C.J. and Robinson, P.A., “Neurophysiological
changes with age probed by inverse modeling of
EEG spectra” Clinical Neurophysiology 121, 21–
38, 2010.
Basar, E., and Guntekin,B., “Review of delta, theta,
alpha, beta, and gamma response oscillations in
neuropsychiatric disorders”, Application of
Brain Oscillations in Neuropsychiatric Diseases
(Supplements to Clinical Neurophysiolog,) Vol.
62, 2013
137
Gözler açık/kapalı durumunda EEG bantlarındaki frekans değişiminin GSY ile belirlenmesi
Basar, E.,Basar-Eroglu,C.,Karakas,S.andSchurmann,
M., “Gamma, alpha, delta, and theta oscillations
govern cognitive processes”, International
Journal of Psychophysiology, 39 241, 248, 2001.
Başar, E. And Düzgün, A., “How is the brain
working? Research on brain oscillations and
connectivities in a new “Take-Off” state”,
International Journal of Psychophysiology,
Available online 7 February 2015, In Press, 2015
Semmlow JL., “Biosignal and biomedical image
processing MATLAB based applications.”
Marcel Dekker Inc.; 2004.
Falamarzi Y., Palizdan N., Huangb Y. F. & Lee,
T.S., “Estimating evapotranspiration from
temperature and wind speeddata using artificial
and wavelet neural networks (WNNs)”,
Agricultural Water Management, 140, 26–36,
2014.
Kannathal, N., Choo, M. L., Acharya, U. R., &
Sadasivan, “Entropies for detection of epilepsy in
EEG”, Journal of Medical Systems, 80(3), 187–
194., 2005.
https://archive.ics.uci.edu/ml/datasets/
EEG+Eye+State#

Thank you for copying data from http://www.arastirmax.com