You are here

Bir taşkın tahmin sisteminin değerlendirilmesi:Nümerik hava tahmin modeli, veri asimilasyonu ve uydu yağışlarının kullanımı

Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall

Journal Name:

Publication Year:

Abstract (2. Language): 
Influences of global warming and climate change have been getting more dominant with more catastrophic events observed around the world. With global warming, major changes in rain and water cycles are being observed and frequency of meteorological disasters such as heavy rainfalls is increasing continuously. With warming climate, drought and flood risks are getting higher consequently. As occurring and evidencing on several geographical regions on the earth, these types of extreme events are also being observed throughout regions more prone to flooding in Turkey. In semiarid environments like Turkey, many small and medium steep streams are ephemeral, which can cause unexpected and extensive flood damage. For this research, use of a numerical weather prediction (NWP) model is intended to establish a possible forecasting system. In NWP model, by using data assimilation, it is aimed to have improvements in short-term weather predictions particularly in precipitation. By forming initial analysis fields of NWP model via three dimensional variational data assimilation system (3DVAR) it is intended to increase accuracy and decrease the bias between actual observations and model predictions. To establish more consistency in hydrological processes, in addition to precipitation products obtained from NWP with and without data assimilation, high resolution satellite-derived precipitation data are also used in hydrological model for flood simulations. By assessing the accuracy of these precipitation products against observations the performance of these products in producing flood hydrographs is tested. In this study, Weather Research and Forecasting (WRF) model as a NWP, coupled with a land surface model is used with and without data assimilation to produce precipitation and surface hydrometeorological variables for a number of rainfall/flood events observed in partially mountainous Western Black Sea region in Turkey. Precipitation produced by this regional modeling system and MPE are inputted to the fully distributed and physically based hydrological model, NOAHHydro model, to generate flood hydrographs. With the implementation of combined system of atmosphere, land surface and hydrological processes in a regional scale, possible flooding events induced by extreme weather events are investigated. Statistical precipitation analyses show that WRF model with 3DVAR improved precipitation up to 12% with respect to no-assimilation. MPE algorithm generally underestimates rainfall and it also showed lower performance than WRF model with and without data assimilation. Depending on reliability of precipitation inputs, NOAH-Hydro model produces reasonable flood hydrographs both in structure and volume. After model calibration is performed using assimilated precipitation inputs in Bartın Basin, NOAH-Hydro model reduced the average error in streamflow by 23.24% and 53.57% with calibration for testing events. With calibrated parameters, NOAH-Hydro model forced by WRF non-assimilated precipitation input also reduced the error in streamflow but with lower rates (16.67% and 40.72%). With a proper model calibration and reliable precipitation inputs, hydrologic modeling system is capable of simulating flood events.
Abstract (Original Language): 
Şiddetli yağış ve taşkın oluşumu gibi uç hava olaylarının iklimin ısınması ile beraber çok daha sık olacağı öngörülmektedir. Hidrolojik tahminler taşkına müdahele ve su kaynakları ile alakalı olarak karar vericiler için kritik olmasına rağmen şu anki iklim yada atmosfer tahminleri hidrolojik tahminler için genellikle yeterli seviyede bir destek sağlayamıyorlar. Bunun sebepleri de, kaba alansal çözünürlüklü iklimsel/meteorolojik tahminler, hidrolojik model ile meteorolojik tahminleri birleştiren ara yüzdeki eksiklikler, ve model sisteminde kullanılan küçük çözünürlüklü girdi verisindeki yetersizlikler olarak açıklanabilir. Bu çalışmanın amacı belirtilen alanlarda iyileştirmeler yaparak bir hidrolojik tahmin periyodu için kara yüzeyi-atmosfer etkileşimlerini, iklimsel durumların etkilerini, ve başlangıçtaki orta-ölçekli hidrometeorolojik yapıyı daha doğruca ele almaktır. Bu kapsamda, uzaktan algılamalı yağış verilerinin kullanımı ile modellerin kaba alansal çözünürlük problemine çözüm aranırken karayüzey ve atmosfer modellerinin birleşik kullanımı ile de kritik yüzey süreçleri daha ileri düzeye getirilmiş olur. Ayrıca, üç boyutlu veri asimilasyon tekniğinin kullanımı ile model başlangıç şartlarındaki orta ölçekli hidrometeorolojik yapı daha güvenilir bir şekilde temsil edilir. Böylelikle hidrolojik tahminlerde başarının artırılması amaçlanmıştır. Bu çalışma, ‘NOAH’ kara-yüzey modeline bağlı ‘WRF’ modelini içeren yüksek grid çözünürlüklü bir hidrometeorolojik model sisteminin ileri seviye grid tabanlı bir hidrolojik model ile kullanılmasını amaçlamıştır. Model sisteminin performansı Türkiye’nin Batı Karadeniz Havzası’nda seçilmiş 25 adet şiddetli yağış olayları ve buna bağlı oluşan taşkınlar için değerlendirilmiştir. WRF asimilasyon ile beraber yağış şiddetinde ve zamanlamasında iyileştirmeler sağlamış ve bu iyileştirmelerde model tarafından oluşturulan taşkın hidrograflarınada yansımıştır. Uydu yağışları genel olarak yağışı az tahmin etmiş ve WRF modeline göre daha az başarılı olmuştur. Taşkın tahminlerinde güvenilir yağış girdilerine ihtiyaç olduğundan WRF modeli içinde asimilasyonun kullanılması çok önemlidir.
201
216

REFERENCES

References: 

Allen M. R., and Ingram W. J., “Constraints on
future changes in climate and the hydrologic
cycle”. Nature, 419, 224-232, 2002.
Brito-Castillo L., Douglas A. V., Layva-Contreras
A., and Lluch-Belda D., “The effect of largescale
circulation on precipitation and streamflow
in the Gulf of California continental watershed”.
Int. J. Climatology, 23, 751-768, 2003.
Chen F., and Dudhia J., “Coupling an advanced land
surface-hydrology model with the Penn State-
NCAR MM5 modeling system. Part I: Model
implementation and sensitivity”. Mon. Wea.
Rev., 129, 569–585, 2001.
Colle B. A., Mass C. F., and Westrick K. W., “MM5
precipitation verification over the Pacific
Northwest during the 1997–99 cool seasons”.
Wea. Forecasting, 15, 730–744, 2000.
Gochis D. G., Leal J. C., Shuttleworth W. J., Watts
C., and Garatuza-Payan J., “Preliminary
Diagnostics from a New Event-Based
Precipitation Monitoring System in Support of
NAME”, J. Hydrometeor., 4, 974-981, 2003.
215
Bir taşkın tahmin sisteminin değerlendirilmesi:Nümerik hava tahmin modeli, veri asimilasyonu ve uydu
yağışlarının kullanılması
Gochis D. G., Brito-Castillo L., Shuttleworth W. J.,
“Hydroclimatology of the North American
Monsoon region in northwest Mexico.”,
J.Hydrology 316, 53-70, 2006.
Gochis D. J., Yu W., and Yates D. N., “The NCAR
Distributed Hydrological Modeling 818 System
(NDHMS): User's Guide and Technical
Description.”, NCAR Science and Technical 819
Note: Under Review. Tech. rep., NCAR, 2012.
Held I. M., and Soden B. J., “Robust responses of
the hydrological cycle to global warming”. J.
Climate, 19, 5686-5699, 2006.
Heinemann T., Lattenzio A., Roveda F., “The
Eumetsat Multi Sensor Precipitation Estimate
(MPE)”, Eumetsat, 2002.
Julien P.Y., Saghafian B., and Ogden F. L., “Rasterbased
hydrological modeling of spatially-variued
surface runoff. Water Resour”. Bull., AWRA,
31(3), 523-536, 1995.
Lee S., Lee D., Chang D., “Impact of Horizontal
Resolution and Cumulus Parameterization
Scheme on the Simulation of Heavy Rainfall
Events over the Korean Peninsula, Advances in
Atmospheric Sciences”, Vol. 28, No. 1, Sayfa 1-
15, 2004.
Liu Y., Zhang D.-L., and Yau M. K., “A multiscale
numerical study of hurricane Andrew (1992).
Part I: Explicit simulation and verification. Mon.
Wea. Rev., 125, 3073–3093, 1997.
Neelin J. D., Munnich M., Su H., Meyerson J. E.,
and Holloway C. E., “Tropical drying trends in
global warming models and observations”.
PNAS, 103, doi: 10.1073/pnas.0601798103,
2006.
Skamarock W. C., Klemp J. B., Dudhia J., Gill D.
O., Barker D. M., Wang W., and Powers J. G.,
“A description of the Advanced Research WRF
Version 2.”, Tech. rep., NCAR, 2005.
Trenberth K. E., “Atmospheric moisture residence
times and cycling: Implications for rainfall rates
and climate change”. Climatic Change, 39, 667-
694, 1998.
Trenberth K. E., “Conceptual framework for
changes of extremes of the hydrological cycle
with climate change.”, Climatic Change, 42, 327-
339, 1999.
Trenberth K. E., vd.,“Observations: Surface and
Atmospheric Climate Change. In: Climate
Change 2007.”, Cambridge University Press.
Cambridge, U.K. and New York, NY, USA, 235-
336, 2007.
Yucel I., Shuttleworth W. J., Pinker R. T, Lu L., and
Sorooshian S., “Impact of ingesting satellitederived
cloud cover into the Regional
Atmospheric Modeling System.”, Mon. Wea.
Rev., 130, 610–628, 2002.
Yucel I., Shuttleworth W. J., Gao X., and
Sorooshian S., “Short-term performance of MM5
with cloud-cover assimilation from satellite
observations.”, Mon. Wea. Rev., 131, 1797–
1810, 2003.

Thank you for copying data from http://www.arastirmax.com