You are here

Öğretme-öğrenme esaslı optimizasyon yöntemi ile uzay kafes kule yapı sisteminin optimum boyutlandırılması

Optimum design of space truss tower using teaching-learning based optimization

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Minimum weight design of steel structures is an important research subject in structural engineering. Main purpose in this subject is to reduce steel consumption. Steel structures include discrete design variables and meta-heuristic algorithm methods are very suitable for optimum design of them. In this study, optimum design of 942-bar steel space truss tower is investigated by using teaching learning based optimization which has been developed in recent years. As in the other stochastic algorithm techniques such as genetic algorithm, harmony search algorithm, ant colony optimization, artificial bee algorithm, simulated annealing, tabu search algorithm, particle swarm optimization etc.; teaching-learning based optimization mimics environmental events. Analyses in this method are conducted by a class including students. Each student in class represents a structural model and information level of each student is tried to increase by teaching and learning phases. So, the best solution obeying the constraints and having minimum weight can be obtained after a specific number of iterations. This novel algorithm technique was developed by Rao et al. (2011) and comprised of two main phases such as teaching phase and learning phase. The number of students in class presents population size. Initial class is randomly created and the best solution in class is selected as teacher. In teaching phase, other students in class are updated to take information from teacher. If new student provides a better design solution, it is replaced with old student. In the learning phase, students in class are updated to get information among them. This phase is very similar to teaching phase. If new student produces a better solution, it is replaced with old students. 942-bar space truss tower investigated in this study is taken from literature. This example was designed by different algorithm methods in literature. The stress constraints according to AISC-ASD (American Institute of Steel Construction- Allowable Stress Design), displacement constraints and geometric size constraints for vertical members are imposed. Design profiles are selected from a specified list which is prepared in SAP2000 software and includes 128W profiles taken from AISC. A program was coded in MATLAB software which is automatically incorporated with SAP2000 OAPI (Open Application Programming Interface) to conduct practically optimization processes. 942-bar space truss tower is modeled in SAP2000 software. The structural model is continuously updated to analyze by this program. 942-bar space truss tower is an example in large scale because its members are collected into 59 different size variables. In this study, population size is selected as 20. Therefore, analyses are conducted with a class determined as 20x59 matrix. Analyses are performed along 600 iterations. Figure 3 shows the variation of the minimum steel weight with iteration steps. As seen in this figure, while steel weight in first iterations is 2000 ton, minimum steel weight is reduced to 169.868 ton after 600 iterations. The solution results obtained in this study are very close to the previous ones in literatures obtained by different algorithms. The minimum weights 172.214 ton, 171.437 ton, 171.261 ton are calculated by Hasançebi and Erbatur (2002, simulated annealing: SA), Hasançebi (2008, evolution strategies: ESs), Hasançebi et al.(2013, bat-inspired algorithm: BI), respectively. In this study, although additional constraints such as geometric size (area and dept of cross sections) for vertical members are used, the minimum weight is calculated as 169.868 ton. This weight is nearly 1% lighter than other results. These successful results show that teaching-learning based optimization is an efficient method for optimum designs of steel structures with discrete design variables. Moreover, this new method is practically applied by using MATLAB-SAP2000 OAPI. So, various structural optimization problems can be carried out by using teaching-learning based optimization.
Abstract (Original Language): 
Bu çalışmada, son yıllarda geliştirilmiş öğretme-öğrenme esaslı optimizasyon yönteminin çelik uzay kafes sistemlerinin optimum boyutlandırılmasındaki başarısının araştırılması hedeflenmiştir ve bu bağlamda 942 elemanlı uzay çelik kafes kule problemi sayısal örnek olarak kullanılmıştır. Diğer bir çok stokastik algoritma yönteminde olduğu gibi öğretme-öğrenme esaslı optimizasyon yöntemi de çevremizdeki olayları taklit etmektedir. Bu algoritma yönteminde analiz işlemleri öğretmen ve öğrencilerinden oluşan bir sınıf ile yürütülmektedir. Sınıftaki her bir öğrenci bir yapı modelini temsil etmektedir ve öğretme-öğrenme aşamaları ile her bir öğrencinin bilgi seviyesinin arttırılması hedeflenmektedir. Bu sayede belirli bir iterasyon sonunda en iyi sonucu (sınırlayıcıları sağlayan ve minimum yapı ağırlığında olan) veren yapı modeli elde edilebilmektedir. İncelenen 942-elemanlı uzay kafes kule yapı modeli literatürden alınmıştır. Bu örnek literatürde birçok farklı algoritma yöntemi ile çözülmüştür. Sınırlayıcılar olarak AISC-ASD (American Institute of Steel Construction- Allowable Stress Design) standartlarındaki gerilme sınırlayıcıları, yer değiştirme sınırlayıcıları ve düşey elemanlar arasında geometrik sınırlayıcılar kullanılmıştır. Tasarım profilleri SAP2000'de hazırlanmış olan ve AISC'den alınan 128 W profili içeren bir kesit listesinden seçilmiştir. Optimizasyon işlemlerinin bilgisayar ortamında pratik olarak yürütülebilmesi amacıyla MATLAB programında SAP2000 OAPI (Open Application Programming Interface) ile otomatik olarak birlikte çalışabilen bir program kodlanmıştır. 942 elemanlı uzay kafes kule yapı sistemi SAP2000 programında modellenmiştir. Öğretme-öğrenme esaslı optimizasyon işlemleri için MATLAB'da geliştirilen program yardımıyla SAP2000'de hazırlanan yapı modeli sürekli güncellenerek otomatik olarak analiz edilmiştir. Bu çalışmada, 942 elemanlı uzay kafes kule yapı sisteminin öğretme-öğrenme esaslı optimizasyon yöntemi ile elde edilen tasarım sonuçları literatür sonuçları ile oldukça benzerdir. Buna göre bu optimizasyon tekniğinin yapısal optimizasyon için başarılı sonuçlar verebileceği görülmüştür.
471
480

REFERENCES

References: 

AISC – ASD (1989). Manual of Steel Construction:
Allowable Stress Design, American Institute of
Steel Construction, Chicago.
Artar, M. ve Daloğlu, A.T. (2015). Optimum design
of steel space frames with composite beams using
genetic algorithm, Steel and Composite
Structures, 19, 2, 503-519.
479
Öğretme-öğrenme esaslı optimizasyon yöntemi ile uzay kafes kule yapı sisteminin optimum boyutlandırılması
Artar, M. ve Daloğlu, A.T. (2015). Optimum design
of composite steel frames with semi-rigid
connections and column bases via genetic
algorithm, Steel and Composite Structures, 19,
4,1035-1053.
Artar, M. (2016). Optimum design of steel space
frames under earthquake effect using harmony
search, Structural Engineering and Mechanics,
58, 3, 597-612.
Aydoğdu, İ. ve Saka, M.P. (2012). Ant colony
optimization of irregular steel frames including
elemental warping effect, Advances in
Engineering Software, 44, 1, 150-169.
Daloglu, A. ve Armutcu, M. (1998). Optimum
design of plane steel frames using genetic
algorithm, Teknik Dergi, 116, 1601-1615.
Dede, T. ve Ayvaz, Y. (2013). Structural
optimization with teaching-learning-based
optimization algorithm, Structural Engineering
and Mechanics, 47, 4, 495-511.
Dede, T. (2013), “Optimum design of grillage
structures to LRFD-AISC with teaching-learning
based optimization”, Structural and
Multidisciplinary Optimization, 48,5, 955-964.
Dede, T. (2014). Application of teaching-learningbased-
optimization algorithm for the discrete
optimization of truss structures, Ksce Journal of
Civil Engineering, 18, 6, 1759-1767.
Değertekin, S.O. (2007). A comparison of simulated
annealing and genetic algorithm for optimum
design of nonlinear steel space frames, Structural
and Multidisciplinary Optimization, 34, 4, 347-
359.
Değertekin, S.O., Hayalioğlu, M.S. ve Gorgun, H.
(2009). Optimum design of geometrically nonlinear
steel frames with semi-rigid connections
using a harmony search algorithm, Steel and
Composite Structures, 9, 6, 535-555.
Değertekin, S.O., Hayalioğlu, M.S. ve Gorgun, H.
(2011). Optimum design of geometrically
nonlinear steel frames with semi-rigid
connections using improved harmony search
method, Mühendislik Dergisi, Dicle University,
Department of Engineering, 2, 1, 45-56.
Erbatur, F., Hasancebi, O., Tutuncu, I. ve Kılıc, H.
(2000). Optimal design of planar and space
structures with genetic algorithms”, Computers
and Structures, 75, 2, 209-224.
Hasançebi, O ve Erbatur F. (2002). “On efficient use
of simulated annealing in complex structural
optimization problems”, Acta Mechanica,157, 27–50.
Hasançebi, O., Çarbas, S. ve Saka, M.P. (2010).
Improving the performance of simulated
annealing in structural optimization, Structural
and Multidisciplinary Optimization, 41,189–203.
Hasancebi O.( 2008). Adaptive evolution strategies
in structural optimization: enhancing their
computational performance with applications to
large-scale structures. Computers and Structures,
86, 119–32.
Hasancebi, O., Teke, T. ve Pekcan, O.(2013). A batinspired
algorithm for structural optimization,
Computers and Structures, 128, 77–90.
Hayalioğlu, M.S. ve Degertekin, S.O. (2005).
Minimum cost design of steel frames with semirigid
connections and column bases via genetic
optimization”, Computers and Structures, 83, 21-
22, 1849-1863.
Hayalioğlu, M.S. ve Değertekin, S.O. (2004).
Genetic algorithm based optimum design of nonlinear
steel frames with semi-rigid connections,
Steel and Composite Structures, 4, 6, 453-469.
Kameshki, E.S. ve Saka, M.P. (2001). Genetic
algorithm based optimum bracing design of nonswaying
tall plane frames, Journal of
Constructional Steel Research, 57, 10, 1081-
1097.
Lee, K.S. ve Geem, Z.W. (2004). A new structural
optimization method based on the harmony
search algorithm, Computers and Structures,
82,781-798.
MATLAB (2009). The Language of Technical
Computing; The Mathworks, Natick, MA, USA.
Rajeev, S. ve Krishnamoorthy, C.S. (1992). Discrete
optimization of structures using genetic
algorithms, Journal of Structural Engineering
ASCE, 118, 5, 1233-1250.
Rao, R.V., Savsani, V.J. ve Vakharia, D.P. (2011).
Teaching-learning-based optimization: A novel
method for constrained mechanical design
optimization problems, Computer-Aided Design,
43, 3,303-315.
Saka, M.P. (2009), Optimum design of steel sway
frames to BS5950 using harmony search
algorithm, Journal of Constructional Steel
Research, 65, 1, 36-43.
SAP2000 (2008). Integrated Finite Elements
Analysis and Design of Structures, Computers
and Structures, Inc, Berkeley, CA.
Toğan, V., Daloğlu, A.T. ve Karadeniz, H. (2011).
Optimization of trusses under uncertainties with
harmony search, Structural Engineering and
Mechanics, 37, 5, 543-560.
Toğan, V. (2012). Design of planar steel frames
using Teaching–Learning Based Optimization,
Engineering Structures, 34, 225–232.

Thank you for copying data from http://www.arastirmax.com