You are here

Akışa dik yerleştirilmiş kare boşluklar içeren bir plakanın kanal içerisindeki akış ve ısı transferi karakteristiklerine etkisinin sayısal incelenmesi

Numerical investigation of a plate including square spaces placed crossstream to the effect of fluid flow and heat transfer characteristics in a channel

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Flow in channel is encountered frequently within the engineering system. Cooling of electronic devices, heat exchangers, many places where the fluid acts as cooling and heating ducts are exemplary flow within the channel. When fluid encounters an obstacle or wall, it is forced to stop due to the shear stress in the opposite direction in the fluid flow inside the chanell. It have importance that the type of flow is laminar or turbulent due to friction effects in these areas. Turbulent flow is an undesirable case because it creates unstable vortex motions. Sometimes, though flow is laminar turbulence can be seen after striking an obstacle. Although increase in friction is undesirable, friction on the walls will increase the heat transfer by generating some heat. The important matter is consideraton that when increasing the heat transfer controlled by placing obstacle in the vertical direction of flow, frictional resistance will also increase. Flow sometimes become irregular suddenly with the sudden increase in velocity due to the cross-sectional narrowing when passing through narrowing place like nozzle and ventury. To prevent this case, grill type obstacles are placed perpendicular direction to flow in various sections. Placed these obstacles allow the recovery again or earlier of flow becamed unstable. Sometimes using the opposite way to this event, flow is allowed to enter the earlier turbulence from laminar. All of these systems may be preferable to control the flow. In this study, flow effects within the channel with 9 squares gaps perpendicular direction to the flow was investigated. Square shaped spaces are positioned at the center of the channel. Study was performed in three dimensions.. Blockage rates (width / height) for square gaps are selected as 1. It was taken side length of each square gaps used as 4s, the distance between space and wall as s, wall thickness of the hollow portion as w = s/2, the channel width and height as D=16s, channel length as 200s, the distance from the channel inlet to square hollow section as 100s, fromsquare hollow section to channel output as 200s. Laminar has been studied for 1000 value of the Reynolds number. Surfaces where the gaps placed are in constant wall temperature of 50 ° C. Ansys Cfx software was used for modeling and solution process. 22747 node and 115742 elements were use in study. Convergence values are taken as 1.10-6 for continuity, x, y, z momentum and energy equation As a result of study, velocity, pressure and temperature values along obstacles were examined. These effects were observed as distinct especially at square hollow sections and following of them. Sudden narrowing at hollow portion and sudden expantion immediately afterwards have changed follow structure fairly quite) Slow flow recovery was observed due to the swirls and unstable flow. It has been observed that the effect of hollow portion on velocity, pressure and temperature values considerably reduced after 100-300 mm of hollow portions, When velocity values analyzed; 800 mm after the channel entry wall effects has led to the formation of fully developed velocity profile. L = 1000 mm is the centre of square gap. Here, the velocity profile has changed completely. Fluid has undergone sudden contraction in this region. Section has decreased and velocity has increased. Undergoing a sudden expansion of the fluid after the 2.5 mm distance from this area has delayed the recovery of flow after space. Maximum velocity has up to about 0.24 m/s from 0.19 m/s in this region. Flow has failure in recovery due to sudden expansion and formed swirl effects from gap output to 300 mm after. L = 1300 mm was obtained as critical length that the velocity profile starts recovering. It has seen that space effects reduced completely at 400 mm for pressure values and at 70 mm and after for temparature values.
Abstract (Original Language): 
Bu çalışmada içerisinde akışa dik yönde 9 adet kare şeklinde boşluklar olan kanaldaki akış etkileri incelenmiştir. Kare şeklindeki boşluklar kanalın tam merkezine yerleştirilmiştir. Çalışma üç boyutlu olarak incelenmiştir. Kare boşluklar için blokaj oranları (en/boy) 1 olarak seçilmiştir. Kullanılan her bir kare boşluğun kenar uzunluğu 4s, boşlukla cidar arası mesafe s, boşluklu kısmın et kalınlığı w = s/2, kanal genişliği ve yüksekliği D = 16s, kanal boyu 200s, kanal girişinden kare boşluklu kısma kadar olan mesafe 100s, kare boşluklu kısımdan kanal çıkışına kadar olan mesafe 100s olarak alınmıştır. Reynolds sayısının 1000 değeri için laminer çalışılmıştır. Akışkan olarak 30oC’de hava kullanılmıştır. Boşlukların olduğu yüzeyler 50oC sabit cidar sıcaklığındadır. Modelleme ve çözüm işlemi için Ansys Cfx yazılımı kullanılmıştır. Çalışmada 22747 düğüm, 115742 eleman kullanılmıştır. Süreklilik, x, y, z momentum ve enerji denklemleri için yakınsama değeri 1x10-6 olarak alınmıştır. Çalışma sonucunda engel boyunca hız, basınç ve sıcaklık değerleri incelenmiştir. Özellikle kare boşluklu kısımlarda ve sonrasında bu etkilerin daha belirgin olduğu izlenmiştir. Boşluklu kısımda yaşanan ani daralma ve hemen sonrasında ani genişleme akışın yapısını oldukça değiştirmiştir. Ardından oluşan girdaplar ve kararsız akıştan dolayı akışın üniform hale daha geç ulaştığı görülmüştür. Boşluklu kısımlardan sonra 100-300 mm sonrasında boşluklu kısmın hız, basınç ve sıcaklık değerleri üzerindeki etkisinin oldukça azaldığı görülmüştür. Hız değerleri incelendiğinde laminer hız profilinin boşluklu kısımdan yaklaşık 300 mm sonrasında üniform hale geldiği görülmüştür. Basınç değerlerinde yaklaşık 400 mm ve sıcaklık değerlerinde 70 mm ve sonrasında boşluk etkilerinin tamamen azaldığı görülmüştür.
559
568

REFERENCES

References: 

Abbasi, W.S., Islam, S.U., Saha, S.C., Gu,Y.T.,
Zhou,C.Y., (2014). Effect of Reynolds numbers
on flow past four square cylinders in a nin-line
square configuration for different gap spacings.
J.Mech.Sci.Technol.28,539–552.
Abdollah,S.,Mahdi,A.,Noorallah,R.,(2008).Experim
ental study of near wake flow behind a
rectangular cylinder. Am.J.Appl. Sci.5,917–926.
Anagnostopoulos, P., Seitanis, S.A., (2014).
Numerical study of a periodic phenomena past
two staggered rows of cylinders in cross-flow.
OceanEng. 92, 212–233.
ANSYS 11.0 (Academic Teaching Introductory)
Command References and Gui.
Bearman,P.W.,Trueman,D.M.,(1972).Aninvestigatio
nofthe flow around rectangular cylinders.
Aeronaut. 23,229–237.
Chatterjee, D., Biswas,G., Amiroudine,S., (2010).
Numerical simulation of flow past Row of square
cylinders for various separation ratios. Comput.
Fluids 39,49–59.
Çengel Y.A. (2008). Akışkanlar mekaniği temelleri
ve uygulamaları, Güven yayınevi, İzmir, 429–
456
Han, Z., Zhou,D., Tu,J., (2013). Laminar flow
patterns around three side-by-side arranged
circular cylinders using semi-implicit three steps
Taylor-characteristic-based-split(3-TCBS)
algorithm. Eng.Appl. Comput. FluidMech. 1, 1–
12.
Huang, Z., Olson,J.A., Kerekes,R.J., Green, S.I.,
(2006). Numerical simulation of the flow around
rows of cylinders. Comput. Fluids 35, 485–491.
Islam, S. U., Zhou,C.Y., Shah,A., Xie, P., (2012).
Numerical simulation of flow past rectangular
cylinders with different aspect ratios using the
incompressible lattice Boltzmann method.
J.Mech. Sci. Tech. 26, 1027–1041.
Kang, S., (2003). Characteristics of flow over two
circular cylinders in a side-by-side arrangement
at low Reynolds numbers. Phys. Fluids 15,2486.
Kim, W. H. Park T. S., (2016). Effects of
noncircular air holes on reacting flow
characteristics in a micro can combustor with a
seven-hole baffle, Applied Thermal Engineering
100, 378–391
Krishnapillai K., Jones R., Peng D., (2009). Threedimensional
fatigue-based structural design
optimisation of fuel flow vent holes, Engineering
Failure Analysis 16, 371–390
Nakagawa,S., Nitta,K., Senda, M., (1999). An
experimental study on unsteady turbulent near
wake of a rectangular cylinder in channel flow.
Exp. Fluids 27, 284–294.
Nakamura,Y., Ohya,Y., Ozono, R., Nakayama, R.,
(1996). Experimental and numerical analysis of
vortex shedding from elongated rectangular
cylinders at low Reynolds numbers 200-103.
J.Wind. Eng. Ind. Aerodyn.65, 301–308.
Okajima,A., (1982). Strouhal numbers of rectangular
cylinders. J.Fluid Mech. 123, 379–398.
Okajima,A.,Nagahisa,T.,Rokugoh,A., (1990). A
numerical analysis of flow around rectangular
cylinders. Jpn .Soc. Mech. Eng.Ser. 2,33.
Sauida M. F., (2013). Reverse flow downstream
multi-vent regulators, Ain Shams Engineering
Journal. 4, 207–214
Sohankar, A., Norberg, C.,Davidson, L., (1997).
Numerical simulation of unsteady low-Reynolds
number flow around rectangular cylinders at
incidence. J. Wind.Eng. Ind. Aerodyn. 69, 189–
201.

Thank you for copying data from http://www.arastirmax.com