You are here

Bulanık SMRGT yönteminin pratik uygulamaları

Practical Applications of Fuzzy SMRGT Method

Journal Name:

Publication Year:

Abstract (2. Language): 
In developing any fuzzy model, construction of the membership functions and generating fuzzy rules are very important. There are many relevant algorithms, i. e. Genetic Algorithm, Artificial Neural Network, Kalman Filters, and many other new statistical or graphical approaches in the literature. However, these approaches do not help in determination of both the fuzzy rules and membership functions together. Additionally, since the difficulties in the usage of these methods many researchers hesitate to use them. Therefore, instead of such methods, the “training and error” approaches are still preferred. In the present study, two applications of a new methodology namely SMRGT, which developed for determining both the membership functions and generating fuzzy rules for a fuzzy system having triangular and trapezoidal membership functions with sentroid deffuzzification method is presented. The SMRGT method was first presented by Toprak (2009). The method can be used only with the "center of gravity" refinement method, both in terms of membership functions (triangle / trapezoid) and fuzzy rules. The difference is that the method often does not need trial-and-error processes; Although this process will be extremely short and will require little processing. In this study, what to do when applying the method is stated in order. A sample application has been given to show the place of this sequence in practice. In practice, it is aimed to calculate the flow depending on the cross-sectional flow velocity and the cross-sectional area of the flow. After the membership functions and rules have been defined, the fuzzy system is set up in the program (MATLAB). The resulting application, graphics are obtained. And this graphs show that the SMRGT method is successful. This study shows; by using the method, mathematical functions can be obtained and the appropriate data can be derived from this function. And so it can be reliably used in the determination of membership functions and the assignment of fuzzy rules without the need for other methods.
Abstract (Original Language): 
Bulanık modellemede, üyelik fonksiyonları ve bulanık kuralların uygun bir şekilde belirlenmesi, denemeyanılma sürecinin kısa tutulabilmesi ve modelin başarısı açısından birinci derecede önemlidir. Gerek üyelik fonksiyonlarının belirlenmesine gerek kuralların atanmasına ilişkin literatürde çeşitli yaklaşımlara rastlamak mümkündür (Genetik Algoritma, Yapay Sinir Ağları, Kalman Filtresi, çeşitli istatistiksel ve grafiksel yaklaşımlar gibi). Fakat bu algoritmalar genellikle, üyelik fonksiyonları ve bulanık kuralların belirlenmesi için ayrı ayrı geliştirilmiştir. Bu yöntemlerin bir kısmı ayrıca paket programları ve geniş zaman ve işlem hacmini gerektirirken bir kısmı ise deneme-yanılma yönteminden tümü ile kurtaracak kadar iyi sonuç verememektedir. Bu çalışmada ise hem üyelik fonksiyonlarının (üçgen/trapez) belirlenmesinde hem de bulanık kuralların atanmasında sentroid durulaştırma yöntemi ile kullanılabilecek SMRGT adında literatürde yeni olan bir yaklaşımın iki pratik uygulaması sunulmaktadır. Uygulama sonucunda, yöntemin başarılı olduğu görülmüştür.
123
132

REFERENCES

References: 

Besada-Juez, J.M., Sanz-Bobi, M.A. (2002),
“Extraction of fuzzy rules using sensibility
analysis in a neural network”, Artificial Neural
Networks - ICANN 2002 Lecture Notes in
Computer Science, 2415: 395-400.
Booker, J.M., (2004). “Membership functions and
probability measures of fuzzy sets”, Journal of
the American Statistical Association, 99 (467):
867-877.
Casillas, J., Cordon, O., de Viana I.F., Herrera, F.,
(2005). “Learning cooperative linguistic fuzzy
rules using the best-worst ant system algorithm”,
International Journal of Intelligent Systems, 20
(4): 433-452.
Chen, J.E., Otto, K.N., (1995). “Constructing
membership functions using interpolation and
measurement theory”, Fuzzy Sets and Systems,
73 (3): 313-327.
Chen, S.M., Kao, C.H., Yu, C.H., (2002).
“Generating fuzzy rules from training data
containing noise for handling classification
problem”, Cybernetics and Systems, 33 (7): 723-
748.
Chen, S.M., Chen, Y.C., (2002). “Automatically
constructing membership functions and
generating fuzzy rules using genetic
algorithms”, Cybernetics and Systems, 33 (8):
841-862.
Chen, S.M., Kao, C.H., Yu, C.H., (2002).
“Generating fuzzy rules from training data
containing noise for handling classification
problem”, Cybernetics and Systems, 33 (7): 723-
748.
Chen, S.M., Lee, S.W., (2003). “A new method to
generate fuzzy rules from relational database
systems for estimating null values”, Cybrenetics
and Systems, 34 (1): 33-57.
Chen, S.M., Yu, C.H., (2003). “A new method to
generate fuzzy rules from training instances for
handling classification problems”, Cybrenetics
and Systems, 34 (3): 217-232.
Chen, S.M., Chang, C.H., (2005). “A new method
to construct membership functions and generate
weighted fuzzy rules from training instances”,
Cybernetics and Systems, 36 (4): 397-414.
130
A. Toprak, Z. Aykaç, Z.F. Toprak
Cho, Y., Lee, K., Yoo, J., Park, M., (1998).
“Autogeneration of fuzzy rules and membership
functions for fuzzy modelling using rough set
theory”, IEE Proceedings-Control Theory and
Applications, 145 (5): 437-442.
Cinar, A., (2005). “A method for local tuning of
fuzzy membership functions”, Computational
Science - Iccs 2005, Pt 3 Lecture Notes in
Computer Science, 3516: 945-949.
de Castro, P.A., Camargo, H.A., (2004). “A study
of the reasoning methods impact on genetic
learning and optimization of fuzzy rules”,
Advances in Artificial Intelligence - Sbia 2004
Lecture Notes in Artificial Intelligence, 3171:
414-423.
Dempster, A.P., (2004). “Membership functions
and probability measures of fuzzy sets –
Comment”, Journal of the American Statistical
Association, 99 (467): 882-884.
Fahn, C.S., Lan, K.T., Chern, Z.B., (1999).
“Fuzzy rules generation using new evolutionary
algorithms combined with multilayer
perceptrons”, IEEE Transactions on Industrial
Electronics 46 (6): 1103-1113.
Finn, G.D., (1999). “Learning fuzzy rules from
data”, Neural Computing & Applications, 8 (1):
9-24.
Halgamuge, S.K., Poechmueller, W., Glesner, M.,
(1995). “An alternative approach for generation
of membership functions and fuzzy rules based
on radial and cubic basis functions networks“,
International Journal of Approximate
Reasoning, 12 (3-4): 279-298.
Hong, T.P. Lee, C.Y., (1996). “Induction of fuzzy
rules and membership functions from training
examples”, Fuzzy Sets and Systems, 84 (1): 33-
47.
Inoue, H., Kamei, K., Inoue, K., (1998).
“Automatic generation of fuzzy rules using
hyper-elliptic-cone membership functions by
genetic algorithms”, Journal Of Intelligent &
Fuzzy Systems, 6 (1): 65-81.
Jin, Y.C., Sendhoff, B., (2003). “Extracting
interpretable fuzzy rules from RBF networks”,
Neural Processing Letters, 17 (2): 149-164.
Kim, M.W., Ryu, J.W., Kim, S., Lee, J.G., (2003).
“Optimization of fuzzy rules for classification
using genetic algorithm”, Advances in
Knowledge Discovery and Data Mining Lecture
Notes in Artificial Intelligence, 2637: 363-375.
Kim, J.W., Kim, B.M., Kim, J.Y., (1998).
“Genetic algorithm simulation approach to
determine membership functions of fuzzy traffic
controller”, Electronics Letters, 34 (20):1982-
198.
Kim, J.H., Seo, J.Y., Kim, G.C., (1996).
“Estimating membership functions in a fuzzy
network model for part-of-speech tagging”,
Journal of Intelligent & Fuzzy Systems, 4 (4):
309-320.
Kissi, M., Ramdani, M., Tollabi, M., Zakarya, D.,
(2004). “Determination of fuzzy logic
membership functions using genetic algorithms:
application to structure-odor modeling”, Journal
of Molecular Modeling, 10 (5-6): 335-341.
Laviolette, M., (2004). “Membership functions
and probability measures of fuzzy sets –
Comment”, Journal of the American Statistical
Association, 99 (467): 879-880.
Leng, G., McGinnity, T.M., Prasad, G., (2005)
“An approach for on-line extraction of fuzzy
rules using a self-organising fuzzy neural
network”, Fuzzy Sets and Systems 150 (2): 211-
243.
Lin, C.J. Ho, W.H., (2005). “An asymmetrysimilarity-
measure-based neural fuzzy inference
system”, Fuzzy Sets and Systems, 152 (3): 535-
551.
Lindley, D.V., (2004). “Membership functions
and probability measures of fuzzy sets –
Comment”, Journal of the American Statistical
Association, 99 (467): 877-879.
Luciano, A.M., Lauria, D., Napoli, E., (1998).
“Algorithm for automatic generation of fuzzy
rules applied to power system controllers”, IEE
Proceedings-Generation Transmission and
Distribution, 145 (2): 161-167.
Mondelli, G., Castellano, G., Attolico, G.,
Distante, C., (1998). “Parallel genetic evolution
of membership functions and rules for a fuzzy
controller”, High-Performance Computing and
Networking Lecture Notes in Computer Science
1401: 922-924.
Pal. T., Pal. N.R., Pal, M., (2003). “Learning
fuzzy rules for controllers with genetic
algorithms”, International Journal of Intelligent
Systems, 18 (5): 569-592.
Sancho-Royo, A., Verdegay, J.L., (1999).
“Methods for the construction of membership
functions”, International Journal of Intelligent
Systems, 14 (12): 1213-1230.
131
Bulanık SMRGT yönteminin pratik uygulamaları
Simon, D., (2002). “Sum normal optimization of
fuzzy membership functions”, International
Journal of Uncertainty fuzzyness and
Knowledge-Based Systems, 10 (4): 363-384.
Singpurwalla, N.D., (2004). “Membership
functions and probability measures of fuzzy sets
– Rejoinder”, Journal of the American Statistical
Association, 99 (467): 884-889.
Toprak, ZF, (2009), Flow Discharge Modeling in
Open Canals Using a New Fuzzy Modeling
Technique (SMRGT), CLEAN-Soil, Air, Water,
37(9), 742–752, DOI: 10.1002/clen.200900146
Singpurwalla, N.D.
Wan, F., Shang, H.L., Wang, L.X., Sun, Y.X.,
(2005). “How to determine the minimum
number of fuzzy rules to achieve given
accuracy: a computational geometric approach
to SISO case”, Fuzzy Sets and Systems, 150 (2):
199-209.
Wu, T.P. Chen, S.M., (1999). “A new method for
constructing membership functions and fuzzy
rules from training examples”, IEEE
Transactions on Systems Man and Cybernetics
Part B-Cybernetics, 29 (1): 25-40.
Wu, S.Q., Er, M.J., Gao, Y., (2001). “A fast
approach for automatic generation of fuzzy rules
by generalized dynamic fuzzy neural networks”
IEEE Transactions On Fuzzy Systems 9 (4):
578-594.
Yin, T.K., (2004). “A characteristic-point-based
fuzzy inference system aimed to minimize the
number of fuzzy rules”, IEEE Transactions on
Fuzzy Systems, 12 (2): 250-273.
Zadeh, L.A., (2004). “Membership functions and
probability measures of fuzzy sets – Comment”,
Journal of the American Statistical Association,
99 (467): 880-881.

Thank you for copying data from http://www.arastirmax.com