You are here

Endüstriyel atıksuların arıtımında yapay sulak alanların kullanımı

The use of constructed wetlands in treatment of industrial wastewaters

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of Author
Abstract (2. Language): 
Wastewaters from industries contain large quantities pollutions such as organic compounds, heavy metals, chemicals, BOD, COD, total nitrogen, ammonia, suspended solids, phenols, oil-grease, total organic carbon, and micro-pollutants. Managers cannot chance the treatment of these wastewater by conventional physical, chemical, and biological treatment methods due to the highly costs. However, wastes from conventional treatment plants usually include certain pollutions that cannot provide hard regulation to discharge into receiving environment. Therefore, constructed wetland (CWs) has applied for the treatment of industrial wastewaters such as tannery, food processing, textile, seafood, paper, winery, petrochemical, pharmaceutical, and also mixed industries during last two decades. CWs are engineered systems that have several advantages such as low energy requirements, easy operation and maintenance, cost effective, landscape esthetics, reuse, and increased wildlife habitat compared to conventional systems. CWs involve wetland vegetation, filter materials, hydrology, and microbial communities. CWs can be classified according to the hydrology (surfacesubsurface flow), type of macrophyte (emergent, submergent, floating, and leaved-floating), and flow path in subsurface (horizontal, vertical). CWs show a natural treatment based on biological activities between macrtophtes (Typhaceace, Cyperaceae, Poaceae, Juncaceae, Cratophyllacea, Lemnaccae, Hydrochantaceae, Polygonaceae, Alismataceae, Araceae) and microorganisms (bacteria, fungi, algae) and their interactions in the filter materialstreatment bed (gravel, sang, soil, rock). CWs can be combined as a hybrid systems to benefit the specific advantages of different type CWs. Physical (filtration, sedimentation, adsorption, and volatization), chemical (precipitation, degradation, and adsorption), and biological (microbial metabolism, plant metabolism, natural die-off, and microbial mediates reactions) treatment mechanisms can be employed together in CWs for wastewater treatment. Nowadays, CWs have been successfully used to treat many type industrial wastewaters had specific characteristics. However, in the present papers the applications of CWs are tried to summarize results from full or pilot-scale studies in 17 countries treating a total of 37 types of industrial wastewaters. The following summaries are given and recommended knowledge about the pollution removal mechanisms for industrial wastewater treatment:  The treatment strategies are determined according to the wastewater characteristics.  CWs most widely used for the industrial wastewater treatment are HSFCWs.  HSFCWs have strong buffering capacity to high organic loading.  FWSCWs are more feasible as a primary step of hybrid/integrated system.  High concentration organic compounds can be caused serious effect on wetland plants, hydraulic of system. The pretreatment of industrial wastewater such as aerobic, anaerobic, chemical, or aeration can be applied to decrease these effects.  The primarily treatment applied for the specific wastewaters contained high concentration heavy metals should be carefully considered due to the operational costs and secondary pollution production.
Abstract (Original Language): 
Yapay sulak alanlar elli yılı aşkın süredir atık su arıtımı için kullanılmaktadır. Genellikle evsel nitelikli atık suların arıtımında kullanılan yapay sulak alan sistemleri son yirmi yıldır endüstriyel kaynaklı atık suların arıtımında da tercih edilmektedir. Ayrıca, yapay sulak alanlar, çevre dostu bir teknoloji olması ve düşük yatırım/işletim maliyeti nedeniyle kırsal bölge ve endüstrilerin atıksularını arıtmak için pahalı geleneksel arıtma metotlarına alternatif bir yöntemdir. Düşük enerji gereksinimi, kolay işletim ve bakım, maliyet verimliliği, arazi estetiği, yeniden kullanım ve canlılara yaşam ortamı oluşturması gibi pek çok avantaja sahip olan yapay sulak alanlar mühendislik sistemleridir. Bitki filtre malzemesi, hidroloji ve mikrobiyal toplulukları içermektedir. Akış türüne göre yüzeysel ve yüzey altı akışlı yapay sulak alanlar olarak ikiye ayrılıp, yüzey alı akışlı sistemler ise yatay ve düşey yüzey altı akışlı sistemler olarak alt gruba ayrılmaktadır. Farklı tip yapay sulak alanların özel avantajlarından yararlanmak için hibrit sistemler olarak birleştirilebilirler. Yapay sulak alan sistemlerinde fiziksel, kimyasal ve biyolojik arıtım mekanizmaları birlikte gelişmektedir. Günümüzde özellikli karaktere sahip endüstriyel atıksuların arıtımda başarı ile kullanılmaktadır. Yapay sulak alanların endüstriyel atık su arıtımındaki ilk uygulamaları petrokimya, mezbaha, et işleme, süt ve kağıt endüstrileri olup ardından tekstil, şarap, sirke ve su ürünleri yetiştiriciliği endüstrileri izlemiştir. Bu çalışma, serbest yüzeyli, yüzey altı akışlı ve hibrit yapay sulak alan sistemlerinin çeşitli endüstriyel atık suların arıtımındaki pilot ya da gerçek ölçekli çalışmaları ve farklı ülkelerdeki uygulamaları ile ilgili bilgileri kapsamaktadır.
213
225

REFERENCES

References: 

Abu Bakar, N.S., Mohd Nasir, N., Lananan, F.,
Abdul Hamid, S.H., Lam, S.S., Jusoh, A.,
(2015). Optimization of C/N rations for nutrient
removal in aquaculture system culturing African
catfish, (Clarias gariepinus) utilizing Bioflocs
Technology, International Biodeterioration
&Biodegradation, 102, 100-106.
Agustina, T.E., Ang, H.M., Pareek, V.K., (2008).
Treatment of winery wastewater using a
photocatalytic/photolytic reactor, Chem. Eng. J.,
135, 151–156.
Ali, N., Mohammad, W., Jusoh, A., Hasan, M.R.,
Ghazal, N., Kamaruzaman, K., (2005). Treatment
of aquaculture wastewater using ultra-low
pressure asymmetric polyethersulfone (PES)
membrane, Desalination, 185, 317-326.
Anastasiou, N., Monou, M., Mantzavinos, D.,
Kassinos, D., (2009). Monitoring of the quality
of winery influents/effluents and polishing of
partially treated wineryflows by homogenous
Fe(II) photo-oxidation, Desalination, 248, 836–
842.
Ávila, C., Reyes, C., Bayona, J.M., Garcia, J.,
(2013). Emerging organic contaminant rempval
depending on primary treatment and operationa
strategy in horizontal subsurface flow constructed
wetlands: ınfluence of redox, Water Research,
47, 315-325.
Aydın Temel F., (2013). Türkiye’de atık su
arıtımında yapay sulak alanların tasarımı ve
potansiyelinin değerlendirilmesi: örnek çalışma,
Kızılcaören, Doktora Tezi, OMÜ, Fen Bilimleri
Enstitüsü, Samsun.
Ávila, C., Matamoros, V., Reyes-Contreras, C.,
Piña, B., Casado, M., Mita, L., Rivetti, C.,
Barata, C., García, J., Bayona, J. M. (2014).
Attenuation of emerging organic contaminants in
a hybrid constructed wetland system under
different hydraulic loading rates and their
associated toxicological effects in wastewater,
Science of the Total Environment, 470–471,
1272–1280.
Berghein, A., Cripps, S.J., Liltved, H., (1998). A
system for the treatment of sludge from landbased
fish-farms, Aquatic Living Resources, 11,
4, 179-187.
Bulc, T.G. ve Ojstršek, A., (2008). The use of
constructed wetland for dye-rich textile
wastewater treatment, J. of Hazardous Materials,
155, 76-82.
Caixeta, C.E.T., Cammarota, M.C., Xavier, A.M.F.,
(2002). Slaughterhouse wastewater treatment:
evaluation of a new three phase separation
system in a UASB reactor, Bioresour. Technol.,
81, 61–69.
Calheiros, C.S.C., Quitério, P.V.B., Silva, G.,
Crispim, L.F.C., Brix, H., Moura, S.C., Castro,
P.M.L., (2012). Use of constructed wetland
systems with Arundo and Sarcocornia for
polishing high salinity tannery wastewater, J.
Environ. Manege., 95, 66–71.
222
F. A. Temel
Chapple, M., Cooper, P., Cooper, D., Revitt, M.,
(2002). Pilot trials of a constructed wetland
system for reducing the dissolved hydrocarbon in
the runoff from a decommissioned refinery,
Proceedings, 8th International Conference
Wetland System for the Water Pollution Control,
877-883, Tanzania.
Chen, T.Y., Kao, C.M., Yeh, T.Y., Chien, H.Y.,
Chao, A.C., (2006). Application of constructed
wetland for industrial wastewater treatment: A
pilot-scale study, Chemosphere, 64, 497-502.
Chowdhury, P., Viraraghavan, T., Srinivasan, A.,
(2010). Biological treatment processes for fish
processing wastewater-A review, Bioresource
Technology, 101, 439-449.
Christen, E.W., Quayle, W.C., Marcoux, M.A.,
Arienzo ,M., Jayawardane, N.S., (2010). Winery
wastewater treatment using the land filter
technique, J. Environ. Manage. 91, 1665–1673.
Comino, E., Riggio, V., Rosso, M., (2011).
Mountain cheese factory wastewater treatment
with the use of a hybrid constructed wetland,
Ecological Engineering, 37,1673–1680.
Coskun, T., Debik, E., Demir, N.M., (2010).
Treatment of olive mill wastewaters by
nanofiltration and reverse osmosis membranes,
Desalination, 259, 65–70.
Dağlı, S., (2006). Evsel atıksulardan yapay sulak
alan sistemleriyle fosfor gideriminin incelenmesi,
Doktora Tezi, İTÜ, Fen Bilimleri Enstitüsü,
İstanbul.
Davies, L.C., Carias, C.C., Novais, J.M., Martins-
Dias, S., (2005). Phytoremediation of textile
effluents containing azo dye by using Phragmites
australis in a vertical flow intermittent feding
constructed wetland, Ecological Eng, 25,594-605.
Espinoza-Quiňones, F.R., Fornari, M.M.T.,
Módenes, A.N., Palácio, S.M., da Silva Jr., F.G.,
Szymanski, N., Kroumov, A.D., Trigueros,
D.E.G., (2009). Pollutant removal from tannery
effluent by electrocoagulation, Chem.Eng. J.,
151, 59–65.
Demirörs, B., (2006). Çukurova bölgesinde yapay
sulak alan teknolojisinin kırsal alanda
kullanımının araştırılması, Yüksek Lisans Tezi,
Çukurova Üniversitesi, Fen Bilimleri Enstitüsü,
Adana.
Fumi, M.D., Parodi, G., Parodi, E., Silva, A.,
Marchetti, R., (1995). Optimisation of long term
activated-sludge treatment of winery wastewater,
Bioresource Technology, 52, 45–51.
Gannoun, H., Bouallagui, H, Okbi, A., Sayadi, S.,
Hamdi, M., (2009). Mesophilic and thermophilic
anaerobic digestion of biologically pretreated
abattoir wastewaters in an upflow anaerobic
filter, Journal of Hazardous Materials, 170, 1,
263–271.
Gasiunas, V., Strusevičius, Z., Strusevičiéne, M.S.,
(2005). Pollutant removal by horizontal
subsurface flow constructed wetlands in
Lithuania, J. Environ. Sci.Health, 40A, 1467–
1478.
Gönüllü, T., (2004). Endüstriyel kirlenme kontrolü,
Birsen Yayınevi, İstanbul.
Grismer, M.E., Shepherd, H.L., (2011). Plants in
constructed wetlands help to treat agricultural
processing wastewater, California Agric. 65, 73–
79.
Güven, G., Perendeci, A., Tanyolaç, A., (2009).
Electrochemical treatment of simulated beet
sugar factory wastewater, Chem. Eng. J., 151,
149–159.
Herouvim, E., Akratos, C.S., Tekerlekopoulou, A.,
Vayenas, D.V., (2011). Treatment of olive mill
wastewater in pilot-scale vertical flow
constructed wetlands, Ecological Engineering,
37, 931–939.
Hihosa-Valsero, M., Matamoros, V., Sidrach-
Cardona, R., Martin-Villacorta, J., Bécares, E.,
Bayona, J.M., (2010). Comprehensive
assessment of the design configuration of
cpnstructed wetlands for the removal of
pharmaceuticals and personal case products from
urban wastewaters, Water Research, 44, 3669-
3678.
Huddleston, G.W., Gillepsie, W.B., Rodgers, J.H.,
(2000). Using constructed wetlands to treat
biochemical oxygen demand and ammonia
associated with a refinery effluent, Ecotoxicol.
Environ. Saf., 45, 188–193.
Ji, G., Sun, T., Zhou, Q., Sui, Xin, Chang, S., Li, P.,
(2002). Constructed subsurface flow wetland for
treating heavy oil-produced water of the Liaohe
Oilfield in China, Ecological Engineering, 18,
459–465.
Ji, G.D., Sun, T.H., Ni, J.R., (2007). Surface flow
constructed wetland for heavy-oil produced water
treatment, Bioresource Technology, 98, 436-441.
Jiang, J.Q., Zhou, Z., Sharma, V.K., (2013).
Occurrence, transportation, monitoring, and
treatment of emerging micro-pollutant in
wastewater-a review from global views,
Microchemical Journal, 110, 292-300.
Justin, M.Z., Vrhovšek, D., Stuhlbacher, A., Bulc,
T.G., (2009). Treatment of wastewater in hybrid
constructed wetland from the production of
vinegar and packaging of detergents,
Desalination, 246, 100-109.
223
Endüstriyel atıksuların arıtımında yapay sulak alanların kullanımı
Kadlec, R.H., Wallence, S.D., (2009). Treatment
wetlands, 2nd edition CRC Press, Boca Raton.
Kaldec, R.H., Knight, R.L., (1996). Treatment
wetlands, CRC Press, Boca Raton.
Kaseva, M.E. ve Mbuligwe, S.E., (2010). Potential
of constructed wetland systems for treating
tannery industrial wastewater, Water Sci.
Technol., 61, 4, 1043–1052.
Khan, S., Ahmad, I., Shah, M.T., Rehman, S.,
Khaliq, A., (2009). Use of cpnstructed wetland
fort he removal of heavy metals from industrial
wastewater, Journal of Environmental
Management, 90, 3451-3457.
Kucuk, O.S., Sengul, F., Kapdan, I.K., (2003).
Removal of ammonia from tannery effluents in a
reed bed constructed wetland, Water Sci.
Technol., 48, 11/12, 179–186.
Lee, E. R., (1999). Ser-Wet: A wetland simulation
model to optimize NPS pollution control, Master
of Science, Faculty of the Virginia Polytechnic
Institute and State University, Blacksburg, VA.
Lefebre, O., Moletta, R., (2006). Treatment of
organic pollution in industrial saline wastewater:
a literature review, Water Res., 40, 3671–3682.
Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F., Chen,
Y.M., Shih, K.C., (2005). Performance of a
constructed wetland treating intensive shrimp
aquaculture wastewater under high hydraulic
loading rate, Environmental Pollution, 134, 411-
421.
Magmedov, V. G., Zakharchenko, M. A.,
Yakovleva, L. I., Ince, M. E., (1996). The use of
constructed wetlands for the treatment of run-off
and drainage waters: The UK and Ukraine
experience, Water Science and Technology, 33,
4-5, 315-323.
Mbuligwe, S.E., (2005). Comparative treatment of
dye-rich wastewater in engineerd wetlands
(EWSs) vegetated with different plants, Water
Research, 39, 2-3, 271-280.
Mannucci, A., Munz, G., Mori, G., Lubello, C.,
(2010). Anaerobic treatment of vegetable tannery
wastewaters: a review, Desalination, 264, 1–8.
Mosteo, R., Ormad, P., Mozas, E., Sarasa, J.,
Ovelleiro, J.L., (2006). Factorial experimental
design of winery wastewaters treatment by
heterogenous photo-Fenton process, Water
Research, 40, 1561–1568.
Munz, G., Gori, R., Cammilli, L., Lubello, C.,
(2008). Characterization of tannery wastewater
and biomass in a membrane bioreactor using
respirometric analysis, Bioresource Technology,
99, 8612–8618.
Murray-Gulde, C., Heatley, J.E., Karanfil, T.,
Rodger, J.H., Myers, J.E., (2003). Performance of
a hybrid reverse osmosis-constructed wetland
treatment system for brackish oil field produced
water, Water Research, 37, 705-713.
Novotny, V. ve Olem, H., (1994). Water quality:
prevention, identification and managemant of
diffuse pollution, Van Nostrand Reinhold, New
York.
OEMC, (2001). Treating wastewater with
Constructed wetlands project final report,
Governor’s Office of Energy Management and
Conservation 225 E, 16th Avenue, Suite 650,
Denver.
Ong, S.A, Uchiyama, K., Inadama, D., Ishida, Y.,
Yamagiwa, K., (2009). Phytoremediation of
industrial effluent containing azo dye by model
up-flow constructed wetland, Chinese Chemical
Letters, 20, 225-228.
Ong, S.A, Uchiyama, K., Inadama, D., Ishida, Y.,
Yamagiwa, K., (2010). Treatment of azo dye
Azid Orange 7 containing wastewater using upflow
constructed wetland with and without
supplementary aeration, Bioresource Technology,
101, 9049-9057.
Othman, S.R.B., (2007). Landfill leachate treatment
using free water surface constructed wetlands,
Master of Engineering, Faculty of Civil
Engineering, University of Technology,
Malaysia.
Özen, Ö., (2006). S.Ü. kampüsü atıksularının
ekilmiş sulak alanda Miscanthus X Giganteus ile
arıtımı ve bitkinin hasat sonrasında adsorban
özelliği, Yüksek Lisans Tezi, Selçuk Üniversitesi,
Fen Bilimleri Enstitüsü, Konya.
Park, N., Vanderford, B.J., Snyder, S.A., Sarp, S.,
Kim, S.D., Cho, J., (2009). Effective controls of
micropollutants included in wastewater effluent
using constructed wetlands under anoxic
condition, Ecological Engineering, 35, 418-423.
Petrie, B., McAdam, E.J., Scrimshaw, M.D., Lester,
J.N., Cartmell, E., (2013). Fate drugs during
wastewater treatment, TrAc Trends in Analytical
Chemistry, 49, 145-159.
Petruccioli, M., Cardoso Duarte, J., Eusebio, A.,
Federici, F., (2002). Aerobic treatment of winery
wastewater using a jet-loop activated sludge
reactor, Process Biochem., 37, 821–829.
Reed, S.C., Crites, R.W., Middlebrooks, E.J.,
(1995). Natural systems for waste management
and treatment, Second Edition, McGraw-Hill,
New York, USA.
224
F. A. Temel
Rousseau, D., (2005). Performance of constructed
treatment wetlands: model-based evaluation and
impact of operation and maintenance, PhD thesis,
Ghent University, Ghent, Belgium.
Saraçoğlu, S., (2006). Eskikaraağaç köyü evsel
atıksularının dip akışlı yapay sulak alan arıtma
yöntemiyle arıtılması, Yüksek Lisans Tezi,
Uludağ Üniversitesi, Fen Bilimleri Enstitüsü,
Bursa.
Serrano, L., De la Varga, D., Ruiz, I., Soto, M.,
(2011). Winery wastewater treatment in a hybrid
constructed wetland, Ecological Engineering, 37,
744–753.
Shepherd, H.L., Grismer, M.E., Tchobanoglous, G.,
(2001). Treatment of high-strength winery
wastewater using a subsurface-flow constructed
wetland, Water Environ. Res., 73, 394–403.
Sindilariu, P.D., Wolter, C., Reiter, R., (2008).
Constructed wetland as a treatment method for
effluents from intensive trout farms, Aquaculture,
277, 179-184.
Sirianuntapiboon, S., Nimnu, N., (1999).
Management of water consumption and
wastewater of seafood processing industries in
Thailand. Suranaree, J. Sci. Technol., 6, 3, 158–
167.
Sohsalam, P., Englande, A.J., Sirianuntapiboon, S.,
(2008). Seafood wastewater treatment in
cpnstructed wetland: Tropical case, Bioresource
Technology, 99, 1218-1224.
Song, Z., Williams, C.J., Edyvean, R.G.J., (2004).
Treatment of tannery wastewater by chemical
coagulation, Desalination, 164, 249–259.
Søvik, A. K., Kløve, B., (2007). Emission of N2O
and CH4 from a constructed wetland in
southeastern Norway, Science of the Total
Environment, 380, 28–37.
Suliman, F., Futsaether, C., Oxaal, U., Haugen, L.E.,
Jenssen, P., (2006). Effect of the inlet–outlet
positions on the hydraulic performance of
horizontal subsurface-flow wetlands constructed
with heterogeneous porous media, Journal of
Contaminant Hydrology, 87, 22-36.
USEPA, “Freewater surface wetlands for wastewater
treatment: a technology assessment”, Office of
Water, Washington, DC, EPA-832-S-99-002,
1999a.
USEPA, (2002). Onsite wastewater treatment
systems manual, Office of Research and
Development, Cincinati, OH.
USEPA, (1988). Constructed wetlands and aquatic
plant systems for municipal wastewater treatment
design manual, Center for Environmental
Research Information Cincinnati, OH.
USEPA, USDA, NRCS (Natural Resources
Conservation Service), (1995). Handbook of
constructed wetlands, A guide to creating
wetlands for: agricultural wastewater, domestic
wastewater, coal mine drainage, storm water in
the Mid-Atlantic Region, Washington, D.C.,
USA.
Uslu, M.O., Jasim, S., Arvai, A., Bewtra, J., Biswas,
N., (2013). A survey of occurrence and risk
assessment of pharmaceutical substances in the
Great Lakes Basin, Ozone Science &
Engineering, 35, 249-262.
Ün, Ü.T., Altay, U., Koparal, A.S., Öğütveren, B.Ü.,
(2008). Complete treatment of olive mill
wastewaters by electrooxidation, Chem. Eng. J.,
139, 445-452.
Ün, Ü.T., Uğur, S., Koparal, A.S., Öğütveren, B.Ü.,
(2006). Electrocoagulation of olive mill
wastewaters, Sep. Purif. Technol., 52, 136-141.
Vymazal, J., Introduction. In: Vymazal, J., H. Brix,
P.F. Cooper, M.B. Green and R. Haberl (eds).
(1998). Constructed wetlands for wastewater
treatment in Europe, Backhuys Publishers,
Leiden.
Vymazal, J., (2005). Horizontal sub-surface flow
and hybrid constructed wetlands systems for
wastewater treatment, Ecological Engineering,
25, 5, 478-490.
Vymazal, J., (2007). Removal of nutrients in various
types of constructed wetlands, Science of The
Total Environment, 380, 48-65.
Vymazal, J., (2008). Constructed wetlands, Surface
Flow, In: Jørgensen, S.E., Fath, B.(eds.),
Encyclopedia of Ecology, Vol. 1. Elsevier BV,
Amsterdam, Netherlands, 765–776.
Vymazal, J., (2009). The use constructed wetlands
with horizontal subsurface flow for various types
of wastewater, Ecological Engineering, 35, 1-17.
Vymazal, J., (2014). Constructed wetlands for
treatment of industrial wastewaters: A review,
Ecological Engineering, 73, 724–751.
Zhang, J., Jetten, M.S.M., Kuschk, P., Ettwing, K.F.,
Yin, C., (2013). Removal of cytostatik drugs
from aquatic environment: a review, Science of
The Total Environment, 445-446, 281-298.
Zhang, S.Y., Zhou, Q.H., Xu, D., He, F., Cheng
Shui, P., Liang, W., Du, C., Wu, Z.B., (2010).
Vertical-flow constructed wetlands applied in a
recirculating aquaculture system for channel
catfish culture: effects on water quality and
zooplankton, Polish J. of Environ. Stud., 19, 5,
1063-1070.

Thank you for copying data from http://www.arastirmax.com