You are here

Yığma yapılarda doğrusal olmayan artımsal analiz için bir yöntem önerisi

A method proposal for step-wise nonlinear analyses of masonry structures

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Masonry structures, due to their material properties especially, exceed the elastic limits and start responding in the inelastic range even after small amplitudes of load, much earlier than attaining the “point of yield”. Both in historical and modern civil masonry construction, most of the masonry structures are of unreinforced type, where the tensile strength of mortar is negligible. As a result, nonlinear behaviour in the unreinforced masonry structures is quite easy to be attained. Capturing the nonlinear response, on the other hand, especially under earthquake-like lateral loads, is quite difficult with the existing analytical tools. Available analytical approaches, material constitutive models and the existing software are not able to provide help in capturing, even for a simple 2-storey masonry, the nonlinear cyclic response. In the homogenized finite element models, the accuracy of the model largely relies on how the modelling approach handles the cracks and the crack development. The available models cause serious problems in convergence when the large level of nonlinearity is present and because cracks are difficult to follow numerically. The problem becomes even more pronounced when the type of loading dictates not only crack opening but also crack closing. Apart from the very high level of non-lineariy, masonry materials are also highly anisotropic or orthotropic. It is known that most of the construction materials exhibit certain degree of anisotropy. In cases where the anisotropy is negligible, formulation of the behaviour in section and member levels becomes significantly easier. When the behaviour of materials assumed as isotropic, such as in the case of concrete and steel, the load response can be easily demonstrated by employing well known yield or failure criteria such as Coulomb or von Mises. On the other hand, for clay bricks for example, despite the fact that the clay itself is a homogenous and isotropic material, the structure of the brick with its cores introduces certain anisotropy. Furthermore, mortar joints and the type of the bond add to the anisotropic behaviour. There are quite many difficulties in accurately modelling the behaviour of anisotropic materials. Additionally to the intrinsic difficulties in the mechanical formulation of anisotropic materials, there is also a lack of comprehensive experimental results both for pre- and post-peak behaviours. Several anisotropic plasticity models have been proposed along the last decades, both from purely theoretical and experimental standpoints as failure criteria. The difficulties in capturing the anisotropic response accurately stem from the material-dependent difficulties as well as physical problems such as the element dimensions. An entire reinforced concrete beam or column can be modelled by using two nodes at minimum, and 12 DOFs. Masonry, however, needs to be modelled with finite elements, leading thus to higher number of DOFs to be solved even for the same size of element with reinforced concrete. The inherent modelling difficulties for unreinforced masonry lead to often problematic convergence issues. In practice, nonlinear analysis of unreinforced masonry in large nonlinearity is not a feasible endeavour in most of the cases. This paper proposes a simplified step-wise method where every analysis step is linear elastic. The approach introduces displacement steps to the structure where the element stresses are cumulatively collected in a separate software where the decisions on the failure type and damage level of each element are also made. This approach cancels out the problems of non-convergence completely, leading to a more realistic analysis time ranges. The proposed approach takes into account the material inelasticity as well as the anisotropy. One of the strong points of the proposed approach is that it can easily capture the negative post-peak slope, which is characteristic of unreinforced masonry. The proposed method is applied to a load bearing piece of a historical construction just to check the consistency of the approach. The proposed method, as its current form, is applicable for monotonic loading only, whilst the adaptation of the method to cyclic loading as well as proof analyses with experiments are among future developments.
Abstract (Original Language): 
Yığma yapılar, betonarme ve çelik yapılara nazaran daha gevrek bir deprem davranışı sergilemektedirler. Gerek tarihi yapıların ve gerekse konut tipi binaların çoğunluğu, özellikle donatısız yığma yapı tarzında inşa edildiğinden ve harç çekme dayanımı ihmal edilebilecek derecede küçük olduğundan, çekme gerilmelerinin neredeyse hiç karşılanmadığı bu sistemlerde doğrusal olmayan davranış daha gözle görülür hasar seviyelerine ulaşmadan bile oldukça kolay gerçekleşebilmektedir. Özellikle deprem gibi yatay yükler ve bunlara bağlı momentler altında beklenen doğrusal olmayan davranışın analitik olarak tespiti ise oldukça zordur. Mevcut malzeme ve eleman modelleri, analiz yöntemleri ve bunların kısmi olarak kullanıldığı yazılımlar, örneğin basit bir yığma yapının deprem yükleri altındaki çevrimsel davranışını kabul edilebilir bir yakınlıkla verebilecek mertebede değildir. Bunun önündeki en büyük engellerden biri yakınsama problemidir. Yığma malzemenin homojen olarak modellendiği sonlu elemanlar yaklaşımlarında yüksek derece doğrusal olmayan davranışın analitik olarak tespiti, çatlak modellerine ve bu çatlakların yayılması ile ilgili yaklaşımlara bağlıdır. Bu makalede, her adımda elastik analiz yapılan ve dolayısı ile yakınsama problemi olmayan, monotonik yükler altında doğrusal olmayan yığma davranışını elde etmeye yarayan bir yöntem önerilmiştir. Önerilen yöntem gerek analiz hızı ve gerekse yakınsama garantisi nedeni ile oldukça avantajlı olmakla birlikte, çözümün doğruluğu konusunda karşılaşılan bazı zorluklar da bu makalede irdelenmiştir. Önerilen yöntemin çevrimsel davranış için de genişletilmesi ve deneysel sonuçlar ile karşılaştırılması konusunda yazarın çalışmaları devam etmektedir.
463
474

REFERENCES

References: 

Asteris P.G., Tzamtzis A.D., (2003). On the use of a
regular yield surface for the analysis of
unreinforced masonry walls, Electronic Journal
of Structural Engineering, 3.
0
200
400
600
800
1000
1200
0 0.005 0.01 0.015 0.02
Kemer Taç Deplasmanı (m)
Taban Kesme Kuvveti (kN)
Gergi Çubukları Var
Gergi Çubukları Yok
473
Yığma yapılarda doğrusal olmayan artımsal analiz için bir yöntem önerisi
Dhanasekar M., Page A. W. and Kleeman P. W.,
(1985). The failure of brick masonry under
biaxial stresses, Proceedings of the Institution of
Civil Engineers, 79(2), 295-313.
Galanti F.M.B., Scarpas T. and Vrouwenvelder A.
C. W., (2000). Finite Element Techniques for
Simulation of Infilled Reinforced Concrete
Buildings Under Earthquake Loading, 12th World
Conference on Earthquake Engineering, New
Zealand, paper no:0263.
Ganz HR, Thürlimann B., (1982). Versuche über die
Festigkeit von zweiachsig beanspruchtem
Mauerwerk. Report No. 7502-3, Institut für
Baustatik und Konstruktion, ETH Zurich.
Lourenço P.B. (1997). An anisotropic macro-model
for masonry plates and shells: Implementation
and validation. Research Report, Delft University
of Technology, Faculty of Civil Engineering, and
University of Minho, Department of Civil
Engineering.
Lu S., and Heuer R., (2007). Seismic assessment of
lifeline masonry structures using an advanced
material model, Structural Control and Health
Monitoring, (14), 321-332.
Menetrey P., and Willam K.J. (1995). Triaxial
failure criterion for concrete and its
generalization, ACI Structural Journal, 92(3),
311-318.
Owen D.R.J. and Figuerias J.A., (1983). Elastoplastic
analysis of anisotropic plates and shells by
the Semiloof element, International Journal of
Numerical Methods in Engineering 19(4), 521-
539.
Page A. W. (1983). The strength of brick masonry
under tension-compression, International Journal
of Masonry Construction, 3(1), 26-31.
Swan C.C. and Çakmak A.S., (1994). A hardening
orthotropic plasticity model for non-frictional
composites: Rate formulation and integration
algorithm, International Journal of Numerical
Methods in Engineering, 37(5), p. 839-860.
Yüksel A (1983). II. Beyazıt ve Yavuz Selim
Dönemi Osmanlı Mimarisi, İstanbul Fetih Vakfı
Yayınları.

Thank you for copying data from http://www.arastirmax.com