Determination of the most effective
EEG channel in Up&Down cursor
movements’ EEG records
Journal Name:
- Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi
Keywords (Original Language):
Author Name | University of Author |
---|---|
Abstract (2. Language):
The main purpose of this study is determination of
the most effective channel in EEG recording related
to up and down cursor movements. Data set Ia
presented in BCI Competition 2003 was used in this
paper. The datasets were taken from a healthy
subject. The subject was asked to move a cursor up
and down on a computer screen, while his cortical
potentials were taken. During the recording, the
subject received visual feedback of his slow cortical
potentials (Cz-Mastoids).
In the determination process, the following steps
were applied; (1) Discrete Wavelet Transform
(DWT) was employed for each channel with different
levels such as 3, 4, 5 and 6th. After this process, cA3,
cA4, cA5, cA6, cD3, cD4, cD5 ve cD6 coefficients
were obtained. (2) Some statistical parameters of the
approximation (cA) and detail (cD) coefficients with
different levels are used for feature vectors.
Different type of statistical parameters can be used
as well but most effective parameters observed from
literature were chosen in this study. These selected
parameters are sum, variance, energy, entropy,
maximum value, minimum value, mean and standard
deviation and all parameters were applied
discretely. It is well known that each of the
parameters has a statistical meaning and which
parameters has the highest effect on classification
were determined with this study. (3) The feature
vectors were classified with k-Nearest Neighbor (k-
NN) method for determining of the most effective
channel.
DWT method was employed for obtaining the
coefficients contains the characteristics of signal
used as feature vectors. DWT is an implementation
of the wavelet transform using a discrete set of the
wavelet scales and translations obeying some
defined rules. In other words, this transform
decomposes the signal into mutually orthogonal set
of wavelets, which is the main difference from the
continuous wavelet transform (CWT),
The selected statistical parameters (sum, variance,
energy, entropy, maximum value, minimum value,
mean and standard deviation) were most popular in
EEG analysis observed in literature, hence these
parameters were used in this study.
For determining the most effective channel, the k-
NN classification method was employed. k-NN is a
simple algorithm that stores all available cases and
classifies new cases based on a similarity measure
(e.g., distance functions such as Euclidean,
Manhattan, Minkowski). k-NN has been used in
statistical estimation and pattern recognition
already in the beginning of 1970’s as a nonparametric
technique
As a result of this study, the following issues were
observed:
i) The most effective channel is A1 was observed. It
means that left hemisfer region of brain is more
active than right side.
ii) The DWT approximation coefficient of level 3 has
exhibited the highest performance as 77.13%. The
detail coefficients have lower performance was
observed.
iii) The Third level of DWT having highest
performance means that the brain is more active in
the frequency range 0-16Hz in up/down cursor
movements.
iv) The parameters having the most important role
in determining the effective channel are sum and
mean values.
Bookmark/Search this post with
Abstract (Original Language):
Bu çalışmada, görsel geri besleme alınarak kayıt edilen yukarı-aşağı imleç hareketlerine ilişkin EEG
kayıtlarında, en etkin kanalın belirlenmesi amaçlanmıştır. Çalışmada, 2003 yılındaki BCI Competition II
yarışmasında sunulan Data set Ia veri kümesi kullanılmıştır. Veri kümesi için izlenilen paradigmada,
sağlıklı bir kişiden bir bilgisayar ekranında imleci yukarı ve aşağı hareket ettirmesi istenilerek, yavaş
kortikal potansiyeller kaydedilmiştir.
İşlem akışında ilk olarak tümleşik olarak verilen veri seti, kanallara bölünerek her bir kanal ayrı ayrı
incelenmiştir. Kanallara ayrılan işaretlere ADD uygulanarak farklı (3., 4., 5. ve 6.) seviyelerde detay (cD)
ve yaklaşım (cA) katsayıları elde edilmiştir. Elde edilen bu verilerin; toplam, varyans, enerji, entropi,
maksimum, minimum, ortalama ve standart sapma değerleri hesaplanmıştır. Bu işlem sonrası elde edilen
veriler, öznitelik veri kümesi olarak değerlendirilmiştir. Bu öznitelikler k-NN ile sınıflandırılmıştır.
Elde edilen sonuçlara bakıldığında, imleç hareketinde en etkin kanalın A1, dolayısıyla beynin sol hemisfer
bölgesinin aktif olduğu görülmüştür. En yüksek performansın, cA3 yaklaşım katsayısına ilişkin toplam ve
ortalama değer ile elde edildiği ve sınıflandırma başarı oranının %77.13 olduğu görülmüştür. Detay
katsayılarının temel alındığı analizlerde ise performansın düşük seviyelerde yer aldığı görülmüştür.
FULL TEXT (PDF):
- 3