You are here

Plastik geri dönüşüm tesisi atıksularının Fenton ve Elektro-Fenton prosesleri ile arıtımı

Treatment of plastic recycling facility wastewaters Fenton and electro- Fenton processes.

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
With increased level of welfare and industrial development, plastic materials are taken places in almost every area of production of various goods in our lives. However, as a result of increasing usage of plastic materials, amount of plastic wastes are augmented continuously. Recycling of plastic wastes is important from the economic point of the waste recycling as well as reducing the amount of waste on the environment and nature. In our country, especially the number of plastic recycling facilities is increasing every year. In the recycling of plastic materials, wastewater is arisen from washing the plastic burrs. The main pollutants in this type of wastewaters are chemical oxygen demand (COD) together with suspended solids and color. Fenton process is one of the most powerful and known advanced oxidation processes. It is based on the production of hydroxyl radicals (OH●) as a result of the reaction between H2O2 and catalyst ferrous ion (Fe2+) under acidic conditions. When compared with the other advanced oxidation processes, while its main advantage is its simple and cheap application, the most important disadvantage of Fenton process is that the catalyst Fe2+ is rapidly converted to Fe3+ which reacts with H2O2 much more slowly, and changed slowly into Fe2+ in the oxidation reaction. Therefore, the rate of Fenton reaction slows down, as the amount of catalyst Fe2+ decreases. On the other hand, the amount of chemical treatment sludge can increase as a result of the usage of the excess amount of ferrous iron. There are several modifications of Fenton process. A combination of Fenton process with electrochemical process is named as electro-Fenton process and this combination enhances oxidation efficiency of the Fenton process. When sacrificial iron electrodes are utilized in electro-Fenton process, the H2O2 is externally added. Sacrificial iron anode is utilized as a ferrous ion source in this electrochemical process. The treatment of various industrial wastewaters via Fenton and electro- Fenton processes has been extensively investigated. Up to the date, the author could not find any study about the treatment of plastic recycling industry effluents by the Fenton and electro-Fenton processes. Therefore, the authors aimed to provide more insight to the feasible treatment of plastic recycling wastewaters by two different applications of Fenton process in this work. The effects of the main operating parameters (reaction time, pH, electrical current, ferrous ion dosage and H2O2 dosage) of the process on the efficiencies of COD removal, which is the target parameter, were investigated. Moreover, kinetic analysis for COD removal was also performed under the optimum conditions predetermined in this study. All experiments were performed using real wastewater supplied from the plastic recycling facility in Nevsehir. In the experimental studies, while the optimized conditions were found as pH = 3, [Fe2+] = 250 mg/L and [H2O2] = 250 mg/L for Fenton process and pH = 3, electricity current = 1,25 A ve [H2O2] = 200 mg/L for electro – Fenton process. Under these circumstances, COD removal efficiencies for Fenton and electro-Fenton processes were % 79,6 and % 81,2, respectively. On the other hand, it was determined that the COD removal in Fenton process was occurred much faster than that of electro- Fenton process. In this case, it was because of the reagents added in the dissolved form in Fenton process. But, electro-Fenton process was more effective even at less H2O2 dosage because of its electro-chemical H2O2 production ability. According to the results of kinetic studies, COD removal via the electro-Fenton and Fenton both processes was fitted well the second-order kinetics. As a result, both of processes has been determined to be effective processes for the treatment of plastic recycling facility wastewater.
Abstract (Original Language): 
Plastik malzemeler, günümüzde hayatımızın her alanında karşımıza çıkmaktadır. Artan refah seviyesi ve gelişen endüstriyelleşme ile özellikle ambalaj olarak kullanılan plastiklerin miktarı her yıl artmaktadır. Bu atıkların, çevre dostu teknolojilerle geri dönüştürülmesi hem ekonomik hem de çevresel açıdan büyük önem arz etmektedir. Plastik kökenli ambalaj atıklarının geri dönüştürülmesinde kullanılan yıkama suyu, geri dönüşüm prosesinden çıkan temel atıktır. Ancak bu yıkama suyu, arıtıldıktan sonra proseste tekrar kullanılmaktadır. Arıtma amacıyla, çöktürme havuzları kullanılmaktadır. Fakat bu fiziksel ön arıtım uygulaması, Su Kirliliği Kontrol Yönetmeliği’ne göre sağlanması gereken deşarj limitleri için yeterli olamamaktadır. Bu çalışmada literatürde örneğine rastlanmayan plastik geri kazanım tesislerinde yıkamadan kaynaklanan atıksuların Fenton ve elektro-Fenton prosesleri ile arıtımı çalışılmıştır. İleri oksidasyon proseslerinden olan Fenton prosesi ve onun elektrokimyasal modifikasyonu olan elektro-Fenton prosesi, yüksek oksidasyon kapasitesine sahip yöntemlerdir. Çalışma kapsamında, Fenton prosesi için pH, ferro demir (Fe2+) ve hidrojen peroksit (H2O2) dozlarının optimizasyonu; elektro-Fenton prosesi için ise pH, elektriksel akım ve H2O2 dozunun optimizasyonu gerçekleştirilmiştir. Her iki proses için de belirlenen optimum şartlarda, atıksudaki kirliliğin temel göstergesi olan kimyasal oksijen ihtiyacı (KOİ) giderimi için kinetik çalışmalar da yürütülmüştür. Fenton prosesi için optimum şartlar, pH = 3, [Fe2+] = 250 mg/L ve [H2O2]= 250 mg/L olarak belirlenmiş iken; elektro-Fenton prosesi için pH = 3, elektriksel akım = 1,25 A ve [H2O2]= 200 mg/L olarak belirlenmiştir. Deneysel olarak belirlenmiş olan optimum şartlarda Fenton prosesinin KOİ giderim verimi % 79,6 iken, elektro-Fenton prosesinin verimi % 81,2 olmuştur. Gerçekleştirilen kinetik çalışmada Fenton prosesinde oksidasyon reaksiyonunun, elektro-Fenton prosesine kıyasla çok daha hızlı gerçekleştiği gözlemlenmiştir. Bu durum, Fenton prosesinde ilave edilen reaktiflerin tümünün çözünmüş formda olmasından kaynaklanmıştır. Öte yandan, elektro-Fenton prosesinin H2O2 üretebilme kabiliyetinden dolayı, Fenton prosesine kıyasla % 20 daha düşük dozda daha yüksek KOİ giderim verimi elde edilebilmiştir. Sonuç olarak her iki prosesin de plastik geri dönüşüm tesislerinden kaynaklanan yıkama atıksularının arıtımı için etkili olduğu belirlenmiştir.
631
639

REFERENCES

References: 

APHA, American Public Health Association,
Standard Methods for Examinations of Water and
Wastewater, 21th ed., American Public Health
Association/ American Water Works
Association/Water Environment Federation,
Washington DC, USA, 2005.
Al-Salem, S.M., Lettieri, P. and Baeyens, J., (2009)
Recycling and recovery routes of plastic solid
waste (PSW): A review. Waste Management, 29,
2625-2643.
Azbar, N., Yonar, T., Kestioglu, K., (2004).
Comparison of various advanced oxidation
processes and chemical treatment methods for
COD and color removal from a polyester and
acetate fiber dyeing effluent. Chemosphere, 55,
35-43.
Bergendahl, J. A., Thies, T. P., (2004). Fenton’s
oxidation of MTBE with zero valent iron. Water
Research, 38, 327–334.
Chamarro, E., Marco, A., Esplugas, S., (2001). Use
of Fenton reagent to improve organic chemical
biodegradability. Water Research, 35, 1047–
1051.
Gallard, H., De Laat, J., Legube, B., (1998).
Influence du pH sur la Vitesse D’oxydation de
Composes Organiques par FeII/H2O2.
Mechanismes Reactionnels et Modelization. New
Journal of Chemistry, 22, 263–268.
Gogate, P.R., Pandit, A.B., (2004) A review of
imperative technologies for wastewater
treatment. I: Oxidation technologies at ambient
conditions, Advances in Environmental Research,
8, 501–551.
Guclu, D., Sirin, N., Sahinkaya, S., Sevimli, M.F.,
(2013). Advanced treatment of coking
wastewater by conventional and modified Fenton
processes. Environmental Progress and
Sustainable Energy. 32, 176-180.
Kiril Mert, B., Yonar, T., Yalılı Kılıç, M., Kestioğlu,
K., (2010). Pre-treatment studies on olive oil mill
effluent using physicochemical, Fenton and
Fenton-like oxidations processes. Journal of
Hazardous Materials, 174, 122-128.
Kobya, M., Can, O.T., Bayramoğlu, M., (2003).
Treatment of textile wastewaters by
electrocoagulation using iron and aluminum
electrodes. Journal of Hazardous Materials, 100,
163- 178.
Lei, H., Li, H., Li, Z., Li, Z., Chen, K., Zhang, X.,
Wang, H. (2010). Electro-Fenton degradation of
cationic red X-GRL using an activated carbon
fiber cathode. Process Safety and Environmental
Protection, 88, 431–438.
Modirshahla, N., Behnajady, M.A., Ghanbary, F.,
(2007). Decolorization and mineralization of C.I.
Acid Yellow 23 by Fenton and photo-Fenton
processes. Dyes and Pigments 73, 305–310.
Ozdemir, C., Tezcan, H., Sahinkaya, S., Kalıpcı, E.,
(2010) Pretreatment of olive oil mill wastewater
by two different applications of Fenton oxidation
processes, Clean Soil Air Water, 38, 1152–1158.
Ozdemir, C., Koden, M.K., Sahinkaya, S., Kalıpcı,
E., (2011). Color removal from synthetic textile
wastewater by sono-Fenton process, Clean – Soil,
Air, Water, 39, 60–67.
Şahinkaya, S., (2013). COD and color removal from
synthetic textile wastewater by ultrasound
assisted electro-Fenton oxidation process.
Journal of Industrial and Engineering Chemistry,
19 (2), 601 – 605.
Su Kirliliği Kontrol Yönetmeliği, (2004), Resmi
Gazete, 25687.
Walling, C., (1975). Fenton’s reagent revisited,
Accounts of Chemical Research, 8, 125–131.

Thank you for copying data from http://www.arastirmax.com