Automatic detection of epileptic
seizures for different time-scaled
EEG signals
Journal Name:
- Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi
Keywords (Original Language):
Author Name | University of Author | Faculty of Author |
---|---|---|
Abstract (2. Language):
Epilepsy is a common disease that recurs itself with
constant seizures. This disease, which is seen in about
1% of the world population, is a clinical condition in
which a sudden, unexpected and irregular electrical
discharge occurs in a part of the brain or completely.
The brain contains important information for the
detection of electroencephalography (EEG) epilepsy,
which is an electrical status analysis of the nerve
cells. For this reason, EEG signals have become a
research area that many experts are interested in.
In this study, we presented an automatic pattern
recognition system using only A and E point clusters
of signs from healthy subjects and epileptic seizures
in a sample length of 23.6 seconds taken from Bonn
University database (A, B, C, D, E). The pattern
recognition system that has been presented in three
stages, pre-processing, feature extraction and
classification. In the first stage, the EEG signals
consisting of 23.6 seconds and 4096 samples are
divided into segments of 128, 256, 512, 1024, 2048,
4096 lengths. With this segmentation, we tried to
study the behavior of EEG signs at different lengths.
In the second step, spectral information of EEG
signals was obtained by using Peridogram and Welch
methods of nonparametric Power Spectral Density
(PSD) methods. When Welch PSD was performed, a
Hamming window was used for each of the lengths of
one EEG mark length, and the overlap ratio of the
parts was selected as 50%. By using two different
PSD estimation methods in the study, it was tried to
investigate the behavior patterns of the data segments
in different spectral methods. After the PSD
estimation, an arithmetic mean is applied to all EEG
signals to reduce the data size, and each segment is
represented by the feature vector in 16 sample
lengths. In the third and last phase, the feature
vectors of 16 sample lengths obtained for each EEG
segment are classified by k nearest neighbors (k-NN),
support vector machine (SVM) extreme learning
machine (ELM) using 5-fold cross-validation method.
With this classification, we tried to investigate the
performances of different classifiers of feature
vectors obtained by different PSD estimates of
different data segments.
The accuracy performances for the 128, 256, 512,
1024, 2048 and 4096 segments resulting from the
classification of the feature vectors obtained by the
Periodogram PSD estimation with k-NN were
99.30%, 99.66%, 99.81%, 99.75%, 100%, 100%
respectively. The accuracy performances for the 128,
256, 512, 1024, 2048 and 4096 segments resulting
from the classification of the feature vectors obtained
by the Welch GSY estimation with k-NN were 99.30%,
99.72%, 99.75%, 99.88%, 100%, 100% respectively.
The accuracy performances for the 128, 256, 512,
1024, 2048 and 4096 segments resulting from the
classification of the feature vectors obtained by
periodogram PSD estimation with SVM were
99.41%, 99.72%, 99.88%, 100%, 100%, 100%
respectively. The accuracy performances for the 128,
256, 512, 1024, 2048 and 4096 segments resulting
from the classification of the feature vectors obtained
by the Welch PSD estimation with the SVM were
99.24%, 99.75%, 99.88%, 100%, 100%, 100%
respectively.
The accuracy performance for the 128, 256, 512,
1024, 2048 and 4096 segments resulting from the
classification of the feature vectors obtained by the
Periodogram PSD estimation by ELM was 99.33%,
99.72%, 99.75%, 99.88%, 100%, 100% respectively.
The accuracy performances for the 128, 256, 512,
1024, 2048 and 4096 segments resulting from the
classification of the feature vectors obtained by
Welch PSD estimation by ELM were 99.18%,
99.72%, 99.75%, 99.88%, 100%, 100% respectively.
It suggested that the pattern recognition system
wherein the performance evaluated for the SVM
classifier has been found that good performance is
obtained. In terms of feature extraction methods used
in the system Welch PSD estimation method of
Periodogram PSD it was found to give better results
according to the estimation. As accuracy
performance is evaluated in terms of the different
EEG data lengths used, in case of the data length
redundancy, the accuracy performance is improved.
A number of pattern recognition techniques have
been proposed with different feature extraction and
classification techniques than the EEG markers used
in this study. The results obtained in these studies
were observed to be close to the results when we
performed the study.
Bookmark/Search this post with
Abstract (Original Language):
Epilepsi halk arasındaki adı ile sara kendini sürekli nöbetler ile tekrarlayan yaygın bir hastalıktır. Dünya
nüfusunun yaklaşık olarak % 1’de görülen bu hastalık beynin bir bölümünde yahut tamamında meydana gelen
ani, beklenmedik ve düzensiz elektriksel boşalma sunucu ortaya çıkan klinik bir durumdur. Beyinde bulunan
sinir hücrelerinin elektriksel durum analizi anlamına gelen elektroensefalografi (EEG) epilepsinin tespiti için
önemli bilgiler içermektedir. Bu sebeple EEG işaretleri birçok uzmanın ilgilendiği bir araştırma alanı haline
gelmiştir.
Bu çalışmamamızda Bonn Üniversitesi veri tabanından (A,B,C,D,E) alınan 23,6 saniye 4096 örnek
uzunluğunda sağlıklı ve epilepsi nöbeti geçiren deneklerden alınan işaretlerden sadece A ve E işaret kümeleri
kullanılarak gerçekleştirilen bir otomatik örüntü tanıma sistemi sunulmuştur.
Sunulan örüntü tanıma sistemi ön işlem, öznitelik çıkarım ve sınıflandırma olmak üzere üç aşamadan meydana
gelmiştir. Birinci aşamada 23,6 saniye ve 4096 örnekten oluşan EEG işaretleri 128, 256, 512, 1024, 2048,
4096 uzunluğunda bölütlere ayrılmıştır. İkinci aşamada parametrik olmayan güç spektral yoğunluk (GSY)
yöntemlerinden Peridogram ve Welch yöntemleri kullanılarak EEG işaretlerinin spektral bilgisi elde
edilmiştir. Welch GSY kestirimi yapılırken her bir EEG işaret uzunluğunun dörtte biri uzunluğunda hamming
penceresi kullanılmış ve parçaların örtüşme oranı %50 olarak seçilmiştir. GSY kestirimi yapıldıktan sonra
veri boyutunu azalmak için tüm EEG işaretlerine aritmetik ortalama uygulanmış ve her bir bölüt 16 örnek
uzunluğunda öznitelik vektörü ile temsil edilmiştir. Üçüncü ve son aşamada her bir EEG bölütü için elde edilen
ve 16 örnek uzunluğunki öznitelik vektörleri 5-katlı çapraz doğrulama yöntemi kullanılarak k en yakın komşu
algoritması (k-NN), destek vektör makinesi (SVM), aşırı öğrenme makinesi (ELM) ile sınıflandırılmıştır. Tüm
sınıflandırıcılar ile yapılan çalışmalarda maksimum %100 sonuç elde edilmiştir.
FULL TEXT (PDF):
- 4