You are here

Sıcak ekstrüze edilmiş AA7075/SiCp kompozitlerin sertlik ve korozyon direncine T6 ve T73 ısıl işlemlerinin etkisi

Influence of T6 and T73 tempers on hardness and corrosion resistance of hot-extruded Al7075-SiCp composites

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study, the influence of T6 and T73 tempers on the microstructure, hardness and corrosion resistance of Al7075 matrix composites reinforced with SiC particle fabricated by extrusion of powder metal compacts were investigated. For this purpose, powder mixtures obtained by addition of average 32 μm sized SiC particles with various ratio (5, 10, 15 and 20 wt%) to AA7075 aluminum alloy powders (wt.% composition: 4.78% Zn, 1.84% Mg, 1.45% Cu, 0.24% Si, 0.25% Cr, 0.26% Mn, 0.23% Fe and Al bal.) were cold pressed under uniaxial pressure (350 MPa). The pressed compacts were heated at 480 °C for 1 hour and then extruded into 12 mm diameter bars. After extrusion, all the samples were solution treated at 480 °C with a soaking duration of 60 min and then water quenched. For T6 temper, the solution treated samples were aged at 120 °C for 24 h. For T73 temper, the solution treated samples were aged at 110 °C for 8 h and then at 175 °C for 8 h in two stages. Characterization of the produced alloy and composite samples included metallographic examination, hardness measurement and density determination. Chemical composition of the AA7075 alloy was analyzed by XRF. The phases and morphology of samples were examined by XRD (Rigaku-Ultima IV) and SEM/EDX (Carl Zeiss Ultra Plus Gemini Fesem). The relative densities of the extruded AA7075 alloy and AA7075/SiC composites were measured by Archimedes’ principle. The hardness values of the samples were measured on the polished sections of the samples by Brinell indentation (QNESS Q250M) using a ball with diameter of 2.5 mm under a load of 31.25 kg. For preparation of samples for exfoliation corrosion tests, the sample surfaces were ground with silicon carbide papers and then polished 6 μm alumina paste. To determine of the corrosion resistance, the alloy and composite samples were exposed to EXCO corrosion solution for 4, 8 and 16 hours. The corrosion tests were immersion tests where the weight loss method was used. The samples were first weighed before being immersed in EXCO corrosion solution and later taken out after 4, 8 and 16 h respectively. SiC particle addition caused a significant increase in the density of the composite samples, and the theoretical density was much closer to the 10% particulate additive composites. In addition, further increase in the amount of SiC particle cause the formations of clustering and finally initiates the formation of pores and weak regions in the composite. SiC particle addition caused a significant increase in the hardness of alloy and composite samples compared with that alloy. The results reveal that the highest hardness values were achieved with T6 heat treated samples while the hardness increases as the weight fraction of the reinforcement increases. Corrosion tests shows that the highest corrosion resistance in both heat treatment types with 10% SiC particle reinforced specimens. T73 temper improved the corrosion resistance of samples, while decreased the hardness about 15%-20% compared to T6 temper.
Abstract (Original Language): 
Bu çalışmada, toz metal kompaktların sıcak ekstrüzyonu ile üretilen SiC partikül takviyeli AA7075 Al matrisli kompozitlerin mikroyapı, sertlik ve korozyon dayanımına T6 ve T73 ısıl işlemlerinin etkisi incelendi. Bu amaçla; AA7075 alüminyum alaşım tozlarına ağırlıkça farklı oranlarda (% 5, 10, 15 ve 20) ortalama 32μm boyutlu SiC partikül ilave edilerek elde edilen toz karışımları, tek yönlü basınç (350 MPa) altında soğuk olarak preslendi. Preslenmiş kompaktlar 480 °C’de 1 saat bekletildikten sonra 12 mm çaplı çubuklar halinde ekstrüze edildi. Ekstruzyon işleminden sonra numunelere T6 ve T73 ısıl işlemleri uygulandı. Alaşım ve kompozit numunelerin yoğunluk, sertlik, mikroyapı, kimyasal kompozisyon ve faz yapıları uygulanan çeşitli test ve analizlerle belirlendi. Korozyon dayanımları 4, 8 ve 16 saat olmak üzere farklı sürelerde EXCO korozyon çözeltisine maruz bırakılan numunelerin ağırlık değişimleri ile belirlendi. Yapılan ölçümler, takviye elemanı miktarındaki artışa bağlı olarak sertlik değerlerinin de arttığını ve en yüksek sertlik değerlerine T6 ısıl işlemli numunelerde ulaşıldığını gösterdi. Yapılan korozyon testleri, matris yapıya ilave edilen SiC partiküllerinin ve uygulanan T73 ısıl işleminin kompozit numunelerin korozyon direncinde kayda değer bir artış meydana getirdiğini ve en yüksek korozyon direncinin %10 SiC partikül takviyeli kompozit numunelerde elde edildiğini gösterdi. T6 ısıl işlemi ile karşılaştırıldığında T73 ısıl işlemi, alaşım ve kompozit numunelerin korozyon direncinde artış meydana getirirken, sertlik değerlerinde %15-20 oranında azalmaya neden olduğu tespit edilmiştir.
827
834

REFERENCES

References: 

Abreu, C. M., Cristóbal, M. J., Figueroa, R., Pena,
G.,(2015). “Wear and Corrosion Performance of
Two Different Tempers (T6 and T73) of AA7075
Aluminium Alloy after Nitrogen Implantation.”
Applied Surface Science 327, 51–61.
Andreatta, F., Campestrini, P., Terryn, H., De
Wit,J.H. W.,(2004). Local Potential Differences
Measured with SKPFM in Aluminium
Alloys,InTrends in Electrochemistry and
Corrosion at the Beginning of the 21st Century,
803–22. Barcelona : Publicacions Universitat de
Barcelona.
Andreatta, F., Terryn, H.,De Wit, J. H .W.,(2004).
Corrosion Behaviour of Different Tempers of
AA7075 Aluminium Alloy,Electrochimica Acta 49
(17–18): 2851–62.
ASTM-G34,(1974). “Standard Test Method for
Exfoliation Corrosion Susceptibility in 2xxx and
7xxx Aluminium Alloys”
Ateş, E. A., Güral,A.,(2016). “AStudy on ageing of
AA2014-Al4C3Composite Materials Produced by
P/M,Journal of the Faculty of Engineering and
Architecture of Gazi University 31 (1): 65–71.
Baydoğan, M., Çimenoğlu, H., Kayalı,E. S.,(2004).
RRA Işleminin 7075 Alaşımının Mekanik
Özelliklerine Etkisi,İTÜ Dergisi, No. 212: 108–16.
Cheng, Y.L., Chen, Z.H., Wu, H.L., Wang,H.M.
(2007). The Corrosion Behaviour of the Aluminum
Alloy 7075/SiCp Metal Matrix Composite Prepared
by Spray Deposition.” Materials and Corrosion 58
(4): 280–84.
El-kady, O.,Fathy, A.,(2014). Effect of SiC Particle
Size on the Physical and Mechanical Properties of
Extruded Al Matrix Nanocomposites.” Materials
and Design 54, 348–53.
Li, J., Peng, Z., Li, C., Jia, Z., Chen, W.,
Zheng,Z.,(2008). Mechanical Properties, Corrosion
Behaviors and Microstructures of 7075 Aluminium
Alloy with Various Aging
Treatments,Transactions of Nonferrous Metals
Society of China, 18 (4): 755–62.
Mahajan, G., Karve, N., Patil, U., Kuppan, P.,
Venkatesan,K.,(2015). Analysis of Microstructure ,
Hardness and Wear of Al-SiC-TiB₂ Hybrid Metal
Matrix Composite,Indian Journal of Science and
Technology, 8, 101-5.
Mazahery, A., Shabani, M. O., (2012).
Characterization of Cast A356 Alloy Reinforced
with Nano SiC Composites.” Transactions of
Nonferrous Metals Society of China (English
Edition) 22 (2), 275-80.
Mohammed, K. S., Naeem,H. T.,(2015). Corrosion
Behaviour of Al2O3p Reinforced Al-Zn-Mg-Cu-
Ni-Co Alloy Fabricated via PM, International
Journal of Science and Research, 4 (3): 2-6.
Rahimian, M., Parvin, N.,Ehsani, N., (2010).
Investigation of Particle Size and Amount of
Alumina on Microstructure and Mechanical
Properties of Al Matrix Composite Made by
Powder Metallurgy,Materials Science and
Engineering A 527 (4-5), 1031-38.
Reddy, M. S., Chetty, S.V., Premkumar, S.,
Reddappa, H.N., (2014). Influence of
Reinforcements and Heat Treatment on
Mechanical and Wear Properties of Al 7075 Based
Hybrid Composites, Procedia Materials Science 5:
508-16.
Shen, Q., Wu, C., Luo, G., Fang, P., Li, C., Wang,
Y.,Zhang, L.,(2014). Microstructure and
Mechanical Properties of Al-7075 / B 4 C
Composites Fabricated by Plasma Activated
Sintering.” Journal of Alloys and Compounds 588,
265-70.

Thank you for copying data from http://www.arastirmax.com