You are here

ANFIS kullanılarak Tunceli ili için global güneş radyasyonu tahmini

Estimating Global Solar Radiation for Tunceli City using ANFIS

Journal Name:

Publication Year:

Abstract (2. Language): 
Because of the high cost of measurement equipment and their maintenance, global solar radiation measurement is not always implemented. Hence, several forecasting approaches based on fuzzy sets, artificial intelligence or soft computing are proposed to forecast global solar radiation owing to being less cost. However, it is vital to select the most suitable approach for a specific purpose and region. In this study, the adaptive-network based fuzzy inference systems (ANFIS) is proposed to forecast monthly mean daily global solar radiation for Tunceli, Turkey. The monthly data between 1990 and 2010 is used for the proposed approach. The data was obtained from provincial directorate of meteorology of Tunceli. According to the gathered data, the highest value of monthly average daily global solar radiation was measured as 5.218 kWh/m² in the year of 1993. The lowest one with a value of 3.905 kWh/m² belongs to the year of 1997. Similarly, the highest value of monthly average daily sunshine duration was measured as 8.71 hours in the year of 1993. The lowest one with a value of 6.64 hours belongs to the year of 2009. When the data is analysed on a monthly basis, the highest value of monthly average daily global solar radiation was measured as 7.409 kWh/m² in the month of June. The lowest one with a value of 1.762 kWh/m² belongs to the month of December. Similarly, the highest value of monthly average daily sunshine duration was measured as 12 hours in the month of July. The lowest one with a value of 3.1 hours belongs to the month of December. The experiments were applied in MATLAB 7 package software in order to obtain the optimum network architecture. In this network, there are 3 inputs (months, years and monthly average daily sunshine duration) and 1 output (the estimation of the monthly average daily global solar radiation). The ANFIS proposed in this study has Gaussian membership function and twenty fuzzy rules are used. The number of the data points (monthly average daily global solar radiation measurement) is 245. As a performance measure of the ANFIS network, the mean absolute percentage error (MAPE) was used. In testing stage, the MAPE was obtained as 6.365 which is quite well for this type of problem. The coefficient of determination (RSquared) value was calculated as 0.999 which is significantly high. The highly successful results show the success of the fuzzy based methodology of ANFIS which provides estimations of global solar radiation successfully. The presented approach shows that the ANFIS illustrates promising in the forecasting of monthly mean daily global solar radiation using available data. Future studies to estimate the monthly mean global solar radiation of Tunceli city with greater accuracy can be achieved using more apparent meteorological input parameters and different artificial intelligence techniques like artificial neural networks, autoregressive moving average methods or support vector machines. These methods can be improved for available models of daily and hourly estimation of global solar radiation.
Abstract (Original Language): 
Ölçüm araçları ve bakımlarının yüksek maliyetlerinden dolayı, global güneş radyasyonu ölçümü her zaman uygulanmamaktadır. Bu nedenden dolayı, daha az maliyetli global güneş radyasyonu tahmin etmek için bulanık, yapay zeka ve yazılım hesaplama tabanlı farklı tahmin teknikleri önerilmiştir. Fakat özel bir amaca ve bölge için en uygun yaklaşımı seçmek çok önemli olmaktadır. Bu çalışmada Tunceli ili için aylık ortalama günlük global güneş radyasyonunu tahmin etmek için adaptif ağ tabanlı bulanık çıkarım sistemi (Adaptive-Network Based Fuzzy Inference Systems) yaklaşımı önerilmiştir. Önerilen yaklaşım için 1990-2010 yılları arasındaki aylık veriler kullanılmıştır. Önerilen yaklaşım, adaptif ağ tabanlı bulanık çıkarım sistemi, mevcut verileri kullanarak aylık ortalama günlük global güneş radyasyonunu tahmin etmede iyi sonuçlar verdiğini göstermektedir.
891
899

REFERENCES

References: 

Balin, A., & Baracli, H. (2014). Modeling Potential
Future Energy Demand for Turkey in 2034 by
Using an Integrated Fuzzy Methodology. Journal
of Testing and Evaluation, 42(6), 1-13.
Çelik, Ö., Teke, A., & Yıldırım, H. B. (2016). The
optimized artificial neural network model with
Levenberg–Marquardt algorithm for global solar
radiation estimation in Eastern Mediterranean
Region of Turkey. Journal of Cleaner
Production, 116, 1-12.
Demirel, Ö., Kakilli, A., & Tektaş, M. (2010).
ANFIS ve ARMA modelleri ile elektrik enerjisi
yük tahmini. Gazi Üniversitesi Mühendislik-
Mimarlık ,Fakültesi Dergisi, 25(3).
Işık, E., İnallı, M. (2011). Tunceli ili için güneş
ışınımının yapay sinir ağları ile tahmini.
Engineering Sciences, 6(1), 190-194.
Jang, J. S. (1993). ANFIS: adaptive-network-based
fuzzy inference system. IEEE transactions on
systems, man, and cybernetics, 23(3), 665-685.
Kalogirou, S. A. (2001). Artificial neural networks
in renewable energy systems applications: a
review. Renewable and sustainable energy
reviews, 5(4), 373-401.
Kılıç, H., Gümüş, B., Yılmaz, B. (2016). Güneydoğu
Anadolu bölgesi için global güneş ışımasının ve
güneşlenme süresinin istatiksel metotlar ile tahmin
edilmesi ve karşılaştırılması, Mühendislik Dergisi,
7(1), 73-84.
Kılıç, B., & Kumaş, K. (2016). Burdur ili
güneşlenme değerlerinin yapay sinir ağları metodu
ile tahmini. SDÜ Teknik Bilimler Dergisi, 6(1),
38-44.
Koca, A., Oztop, H. F., Varol, Y., & Koca, G. O.
(2011). Estimation of solar radiation using
artificial neural networks with different input
parameters for Mediterranean region of Anatolia in
Turkey. Expert Systems with Applications,38(7),
8756-8762.
Mellit, A., & Kalogirou, S. A. (2011). ANFIS-based
modelling for photovoltaic power supply system:
A case study. Renewable energy, 36(1), 250-258.
Mellit, A., Arab, A. H., Khorissi, N., & Salhi, H.
(2007, June). An ANFIS-based forecasting for
solar radiation data from sunshine duration and
ambient temperature. In Power Engineering
Society General Meeting, 2007. IEEE (pp. 1-6).
IEEE. Technology, 147, 12-17.
Mellit, A., Kalogirou, S. A., Shaari, S., Salhi, H., &
Arab, A. H. (2008). Methodology for predicting
sequences of mean monthly clearness index and
daily solar radiation data in remote areas:
application for sizing a stand-alone PV
system. Renewable Energy, 33(7), 1570-1590.
Mohammadi, K., Shamshirband, S., Kamsin, A.,
Lai, P. C., & Mansor, Z. (2016). Identifying the
most significant input parameters for predicting
global solar radiation using an ANFIS selection
procedure. Renewable and Sustainable Energy
Reviews, 63, 423-434
Ozgoren, M., Bilgili, M., & Sahin, B. (2012).
Estimation of global solar radiation using ANN
over Turkey. Expert Systems with
Applications, 39(5), 5043-5051.
Pusat, S., Akkoyunlu, M. T., Pekel, E., Akkoyunlu,
M. C., Özkan, C., & Kara, S. S. (2016). Estimation
of coal moisture content in convective drying
process using ANFIS. Fuel Processing
Sözen, A., & Arcaklioǧlu, E. (2005). Solar potential
in Turkey. Applied Energy, 80(1), 35-45.
Sözen, A., Arcaklioğlu, E., & Özalp, M. (2004).
Estimation of solar potential in Turkey by artificial
neural networks using meteorological and
geographical data. Energy Conversion and
Management, 45(18), 3033-3052.
Suganthi, L., Iniyan, S., & Samuel, A. A. (2015).
Applications of fuzzy logic in renewable energy
systems–a review. Renewable and Sustainable
Energy Reviews, 48, 585-607.

Thank you for copying data from http://www.arastirmax.com