You are here

ZAMAN-FREKANS DÜZLEMİNDE SİNYAL BİLEŞENİ ÇIKARIMI İÇİN YENİ BİR YÖNTEM

A NOVEL METHOD FOR SIGNAL COMPONENT INCISION IN THE TIME-FREQUENCY PLANE

Journal Name:

Publication Year:

Abstract (2. Language): 
A new time-frequency signal analysis technique for detection and extraction of signal components, which have non-overlapping compact support in the time-frequency plane, is developed. Proposed technique is observed to be successful even under high noise levels. The method is composed of three main steps: 1)detection of signal components, 2)estimation of instantaneous frequencies of the detected components 3) filtering in the time-frequency plane. By construction, it is an iterative algorithm which detects and extracts one component at a time. Time-frequency distributions are utilized for signal component detection and instantaneous frequency estimation. Principle curve projections, which is very robust to noise, is used for instantaneous frequency estimation. Filtering in the time-frequency plane is accomplished by frequency warping. The performance of the proposed algorithm is analyzed on synthetic data sets for different noise levels.
Abstract (Original Language): 
Zaman-frekans düzleminde örtüşmeyen, tıkız bileşenlere sahip sinyallerin bileşenlerini tespit eden ve ayrıştıran yeni bir zaman-frekans sinyal analizi tekniği geliştirilmiştir. Geliştirilen tekniğin oldukça yüksek gürültü seviyelerinde bile sinyallerin ayrıştırılmasında başarılı olduğu gözlemlenmiştir. Önerilen teknik, 1) Sinyal bileşenlerinin tespiti, 2) Tespit edilen bileşenlerin anlık frekanslarının kestirimi, 3) Zaman-frekans düzleminde filtreleme basamaklarından oluşmaktadır. Bu kuram, döngüsel olup, her bir döngüde bir sinyal bileşeni tespit edilip ayrıştırılmaktadır. Ölçüm sinyalindeki bileşenlerin tespiti ve anlık frekans kestirimi için, zaman-frekans dağılımları kullanılmıştır. Anlık frekans kestirimi, gürültüye karşı hassasiyeti oldukça gürbüz olan, ana eğri izdüşümleri ile elde edilmiştir. Zaman-frekans düzleminde filitreleme frekans bükme ile sağlanmıştır. Önerilen tekniğin başarımı sentetik sinyaller üzerinde çeşitli gürültü seviyelerinde incelenmiştir.
1-15

REFERENCES

References: 

Almeida L. B. (1994): “The Fractional Fourier Transform and Time-Frequency
Representations”, IEEE Transactions on Signal Processing, Cilt 42, No. 11, s. 3084:3091.
Boashash B. (19921
): “Estimating and Interpreting the Instantaneous Frequency of a SignalPart I: Fundementals”, Proceedings of IEEE, Cilt 80, No. 4, s. 520-538.
Boashash B. (19922
): “Estimating and Interpreting the Instantaneous Frequency of a SignalPart II: Algorithms and Applications”, Proceedings of IEEE, Cilt 80, No. 4, s. 540-568.
Cizek V. (1970): “Discrete Hilbert Transform”, IEEE Transactions on Audio and
Electroacoustics, Cilt 18, No. 4, s. 340-343.
Cohen L. (1989): “Time-Frequency Distribution- a Review”, Proceedings of IEEE, Cilt 77,
No 7, s. 941-981.
Cohen L. (1992): “What is a Multi-Component Signal”, IEEE International Conference on
Acoustics, Speech and Signal Processing-ICASSP‟1992, Cilt 5, s. 113-1116.
Daubechies I. (1990): “The Wavelet Transform, Time-Frequency Localization and Signal
Analysis”, IEEE Transactions on Information Theory, Cilt. 36, No. 5, s. 961-1005.
Erdoğmuş D., Özertem U. (2007): “Self-Consisted Locally Defined Principle Surfaces”, IEEE
International Conference on Acoustics, Speech and Signal Processing-ICASSP‟2007, Cilt
2, s. 549-552.
Mann S., Haykin S. (1995): “The Chirplet Tranform: Physical Considerations”, IEEE
Transactions on Signal Processing, Cilt 43, No. 11, s. 2745-2761.
Özdemir A. K. (2003): “Time-Frequency Component Analyzer”, Bilkent University Faculty
of Engineering PhD Dissertation.
Picinbono B. (1993): “On Instantaneous Amplitude and Phase of Signals”, IEEE Transactions
on Signal Processing, Cilt 45, No. 3, s. 552-560.
Qian S., Chen D. (1993): “Discrete Gabor Transform”, IEEE Transactions on Signal
Processing, Cilt 41, No. 7, s. 2249-2438.

Thank you for copying data from http://www.arastirmax.com