You are here

PETROKİMYA ENDÜSTRİSİ ATIKSULARININ GÜNEŞ IŞIĞI İLE OKSİDASYONU

SOLAR OXIDATION OF PETROCHEMICAL INDUSTRY WASTEWATERS

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
As an advanced oxidation treatment, the Fe(III)/TiO2/Solar-UV process was applied to a petrochemical refinery wastewater in İzmir. The Box–Wilson experimental design method was employed to optimize the wastewater flowrate, oxidant and catalyst concentrations as significant factors for maximum organic matter removal. Organic matter removal was monitored throughout the operation period. The maximum reduction in the TOC concentration was 49% with the addition of 250mg/L TiO2 and 0.5mM Fe(III) at a 50L/h flowrate after 8 hours of exposure to solar irradiation.
Abstract (Original Language): 
zmir’de bulunan bir petrokimya endüstrisi atıksuyunda organik madde giderimi üzerine ileri oksidasyon yöntemlerinden biri olan Fe(III)/TiO2/Solar-UV prosesinin etkisi araştırılmıştır. Verimi etkileyen önemli parametrelerden olan atıksu debisi, oksidant madde ve katalizör konsantrasyonunu optimize etmek için Box-Wilson deneysel tasarım yöntemi uygulanmıştır. Organik madde giderimi deney süresince gözlenmiştir. Maksimum TOK giderimi (% 49), 250mg/L TiO2 ve 0.5mM Fe(III) 50L/s debide 8 saat güneş ışığı oksidasyonu sonunda elde edilmiştir.
39-51

REFERENCES

References: 

Akbulut H.Y., Karpuzcu M., Cihan F. (2003): “Anatoly Dimoglo Petrol İçeren Atıksuların
Elektrokimyasal Yöntemlerle Arıtılması”, Çevre Mühendisleri Odası, 5. Ulusal Çevre
Mühendisliği Kongresi, Mersin, s. 164-178.
Alhakimi G., Studnicki L.H., Al-Ghazali M. (2003): “Photocatalytic Destruction of Potassium
Hydrogen Phthalate Using TiO2 and Sunlight: Application for the Treatment of Industrial
Wastewater”, Journal of Photochemistry and Photobiology A: Chemistry, N.154, s. 219–
228.
APHA (2005): “Standard Methods for the Examination of Water and Wastewater”, 21st
Edition American Public Health Association, American Water Works Association, Water
Environment Federation Washington, USA.
Baycan-Parilti N., Akten, D. (2010): “Application of Box–Wilson Experimental Design
Method for the Solar Photocatalytic Degradation of Textile Dyestuff with
Fe(III)/H2
O2/Solar UV Process”, Desalination, N.260, s. 193–198.
Baycan-Parilti N. (2010): “Treatment of a Petrochemical Industry Wastewater by a Solar
Oxidation Process Using the Box-Wilson Experimental Design Method”, Ekoloji, N.19
(77), s. 9-15.
Bekbolet M., Özkösemen G. (1996): “A Preliminary Investigation on the Photocatalytic
Degradation of a Model Humic Acid”, Water Science Research, N.33, s. 189-194.
Castillo L., El Khorassani H., Trebuchon P., Thomas O. (1999): “UV Treatability Test for
Chemical and Petrochemical Wastewater”, Water Science and Technology, N.39, s. 17-23.
Coelho A., Castro A.V., Dezotti M., Sant’Anna Jr.GL. (2006): “Treatment of Petroleum
Refinery Sourwater by Advanced Oxidation Processes”, Journal of Hazardous Materials
B, N.137, s. 178–184.
Gök O., Sponza D., Türkman A. (2007): “Petrokimya Endüsrisi Atıksularının Aerobik
Arıtılabilirliği”, Çevre Mühendisleri Odası, 7. Ulusal Çevre Mühendisliği
Kongresi:Yaşam Çevre Teknoloji, İzmir, s. 374-382.
Juang L.C., Tseng D.H., Yang S.C. (1997): “Treatment of Petrochemical Wastewater by
UV/H2
O2
Photodecomposed System”, Water Science and Technology, N.36, s. 357-365.
Oppenländer T. (2003): “Photochemical Purification of Water and Air, Advanced Oxidation
Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts”, Wiley-VCH,
Weinheim, Germany.
Palmer P.L., Eggins B.R., Coleman H.M. (2002): “The Effect of Operational Parameters on
the Photocatalytic Degradation of Humic Acid”, Journal of Photochemistry and
Photobiology A, N.148, s. 137-143.
Saien J., Nejati H. (2007): “Enhanced photocatalytic degradation of pollutants in petroleum
refinery wastewater under mild conditions”, Journal of Hazardous Materials B, N.148, s.
491–495.
Shaphard G.S., Stockenstrom S., deVilliers D., Engelbrecht W.J., Wessels G.F. (2002):
“Degradation of Microcystin Toxins in a Falling Film Photocatalytic Reactor with
Immobilized Titanium Dioxide Catalyst”, Water Research, N.36 (1), s. 140-146.
Sponza D.T. (2003): “Investigation of Extracellular Polymer Substances (EPS) and
Physicochemical Properties of Different Activated Sludge Flocs Under Steady-State
Conditions”, Enzyme Microbiology Technology, N.32, s. 375-385.
Stepnowskia P., Siedlecka E.M., Behrend P., Jastorff B. (2002): “Enhanced PhotoDegradation of Contaminants in Petroleum Refinery Wastewater”, Water Research, N.36,
s. 2167–2172.
T.C. Çevre ve Orman Bakanlığı, Çed ve Planlama Genel Müdürlüğü, Çevre Envanteri Dairesi
Başkanlığı (2004): “Türkiye Çevre Atlası”,
www.cedgm.gov.tr/CED/Files/cevreatlası/atlas_metni.pdf.
Wise H.E., Fahrenthold P.D. (1981): ‘Predicting Priority Pollutants from Petrochemical
Processes’, Environmental Science and Technology, N.15, s. 1292-1304.
Yiğit Z., İnan H., Selçuk H. (2007): “Su Arıtımında Nanopor Titanyum Dioksitin
Fotokatalitik/Fotoelektrokatalitik Proseslerinde Kullanılması”, Çevre Mühendisleri Odası,
7. Ulusal Çevre Mühendisliği Kongresi:Yaşam Çevre Teknoloji, İzmir, s. 467-472.

Thank you for copying data from http://www.arastirmax.com