You are here

BİLGİSAYAR TABANLI SES ANALİZİNİN TIBBİ TANIDA KULLANILMASI

COMPUTER BASED VOICE ANALYSIS ON MEDICAL DIAGNOSIS

Journal Name:

Publication Year:

Abstract (2. Language): 
The change in voice quality is affected by many of voice disorders that coming from pathogical conditions of voice generation organs. The aim of this study is to help that the clinicians could be diagnosed about voice disorders with non-invasive based analysis. In our work, amplitude perturbation quotient, pitch period perturbation quotient, degree of unvoiceness, Teager Energy Operators averages of wavelet transform coefficients, and higher-order statistics parameters have formed the feature vectors. The voice segments belonging to different pathological or normal classes were classified by backpropagation based multilayer perceptron networks. In backpropagation based multilayer perceptron networks, resilient, scaled-conjugate gradient, and Brodyen-Fletcher-GoldfarbShanno learning algorithms were used in training. According to the results of the simulation studies, scaled-conjugate gradient algorithm gave the best results.
Abstract (Original Language): 
Sesin oluşmasını sağlayan organlarındaki patolojik durumlardan kaynaklanan ses hastalıklarının birçoğu sesin kalitesinde değişime sebep olur. Uzmanlar, sesteki hastalıklara tanı koymak için değişik yöntemler kullanmaktadır. Bu çalışmada; örselemesiz tabanlı analiz ile, doktorun tanı koymasına yardımcı olunmaktadır. Genlik değişim oranı, perde değişim oranı, sessizlik derecesi, Teager enerji ortalamalı dalgacık dönüşüm katsayıları ve yüksek dereceli istatistik parametreleri ile öznitelik vektörleri oluşturulmuştur. Sağlıklı veya farklı hastalık sınıflarına ait ses bölütleri, geriye yayınım temelli çok katmanlı algılayıcı ağlar ile sınıflandırılmıştır. Geriye yayınım temelli ağlar; esnek, ölçekli-eşlenik gradyan ve Brodyen-Fletcher-Goldfarb-Shanno (BFGS) öğrenme algoritmaları ile eğitilmiştir. Benzetim çalışmaları sonucunda, ölçekli-eşlenik gradyan algoritmasının en iyi sonucu verdiği bulunmuştur.
11-22

REFERENCES

References: 

P. Boersma (1993): “Accurate Short-term Analysis of the Fundamental Frequency and the
Hamonics-to-Noise Ratio of a Sampled Sound”, Proceedings of the Institute of Phonetic
Sciences, Cilt 17, s. 97-110.
B. Boyanov, S. Hadjitodorov (1997): “Acoustic Analysis of Pathological Voices”, IEEE
Engineering in Medicine and Biology,Cilt 16, s. 74-81.
E. J. Ciaccio, S. M. Dunn, M. Akay (1993): “Biosignal Pattern Recognition and Interpretation
Systems”, IEEE Engineering in Medicine and Biology Magazine, Cilt 12, s. 89-97.
H. Demuth, M. Beale (2002): “Neural Network Toolbox for Use with MATLAB”.
J. L. Godino-Llorente, S. Aguilero-Navarro, P. Gomez-Vilda (2000): “Non-supervised Neural
Net Applied to the Detection of Voice Impairment”, IEEE International Conference on
Acoustics, Speech, and Signal Processing, s. 3594-3597.
S. Hadjitodorov, B. Boyanov, B. Teston (2000): “Laryngeal Pathology Detection by Means of
Class-specific Neural Maps”, IEEE Transactions on Information Technology in
Biomedicine, Cilt 4, s. 68-73.
J. H. L. Hansen, L. Gavidia-Ceballos, J. F. Kaiser (1998): “A Nonlinear Operator-based
Speech Feature Analysis Method with Application to Vocal Fold Pathology Assessment”,
IEEE Transactions on Biomedical Engineering, Cilt 45, s. 300-313.
H. K. Heris, B. S. Aghazadeh, M. Nikkhah-Bahrami (2009): “Optimal Feature Selection for
the Assessment of Vocal Fold Disorders”, Computers in Biology and Medicine, Cilt 39, s.
860-868.
F. Jabloun, A. E. Çetin, E. Erzin (1999): “Teager Energy Based Feature Parameters for
Speech Recognition in Car Noise”, Cilt 6, s. 259-261.
C. W. Jo, H: Kim (1999): “Classification of Pathological Voice into Normal/Benign/Malign
State”, Proceedings of Eurospeech, s. 571-574.
M. A. Kılıç, E. Okur (2001): “CSL ve Dr. Spech ile Ölçülen Temel Frekans ve Pertürbasyon
Değerlerinin Karşılaşırılması” KBB İhtisas Dergisi, Cilt 8, s. 152-157.
C. Manfredi, M. D’aniello, P. Bruscagliani, A. Ismaelli (2000): “A Comparative Analysis of
Fundemenal Frequency Estimation Methods with Application to Pathological Voices”,
Medical Engineering & Physics, Cilt 22, s. 135-147.
C. E. Martinez, R. L. Hugo (2000): “Acoustic Analysis of Speech for Detection of Laryngeal
Pathologies”, Proceedings of the 22nd Annual EMBS International Conference, s. 2369-
2372.
M. F. Moller (1993): “A Scaled Conjugate Gradient Algorithm for Fast supervised Learning”,
Neural Networks, Cilt 6, s. 525-533.
E. Nemer, R. Goubran, S. Mahmoud (2001): “Robust Voice Activity Detection Using Higherorder Statistics in the LPC Residual Domain”, IEEE Transactions on Speech and Audio
Processing, Cilt 9, s. 217-231.
S. Osowski, T. H. Linh (2001): “ECG Beat Recogniton Using Fuzzy Hybrid Neural
Network”, IEEE Transactions on Biomedical Engineering, Cilt 48, s. 1265-1271.
J. C. Principe, N. R. Euliano, W. C. Lefebvre (2000): “Neural and Adaptive Systems:
Fundementals through Simulations”, John Wiley and Sons Inc.
M. M. Sondhi (1968): “New Methods of Pitch Extraction”, IEEE Transactions on Audio and
Electroacoustics, Cilt 16, s. 262-266.
A. H. Tewfik, D. Sinha, P. Jorgensen (1992): “On the Optimal Choice of a Wavelet for Signal
Representation”, IEEE Transactions on Information Theory, Cilt 38, s. 747-765.
Z. Tüfekci, J. N. Gowdy (2000): “Feature Extraction Using Discrete Wavelet Transfrom for
Speech Recognition”, Proceedings of the IEEE Southeastcon, s. 116-123.
V. Uloza, A. Verikas, M. Bacauskiene, A. Gelzinis, R. Pribuisiene, M. Kaseta, V. Saferis
(2011): ”Categorizing Normal and Pathological Voices: Automated and Perceptual
Categorization”, Journal of Voice, Cilt 25, s. 700-708.
P. Veprek, M: S. Scordilis (2002): “Analysis, Enhancement and Evaluation of Five Pitch
Determination Techniques”, Speech Communication, Cilt 37, s. 249-270.
X. Wang, J. Zhang, Y. Yan (2011): “Discrimination Between Pathological and Normal
Voices Using GMM-SVM Approach”, Journal of Voice, Cilt 25, s. 38-43.
E. Yumoto, W. J. Gould (1982): “Harmonics-to-Noise Ratio as An Index of the Degree of
Hoarness”, Journal Acoustical Society of America, Cilt 71, s. 1544-1550.

Thank you for copying data from http://www.arastirmax.com