You are here

NOKTASAL SÜREÇLERDE EN YÜKSEK OLABİLİRLİKLİ KESTİRİM İŞLEMİNİN EVRE İZGESİ

PHASE SPECTRUM OF POINT PROCESS MAXIMUM LIKELIHOOD DECODER

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
One of the methods that are used for estimating variables that drive point processes is maximum likelihood estimation. One application of this method is neural spike train decoding. The phase spectrum of the point process maximum likelihood decoder has not been examined previously. Here, this phase spectrum is examined in a simulated experiment under neuroscientifically realistic conditions. The major finding of the study is that the phase delay of the maximum likelihood decoder is statistically not significant in the frequency range of interest. A second finding is that, under the same conditions, the phase delay of the point process recursive filter is significantly greater than zero. These results are important for studies that examine the timing of information processing within the nervous system.
Abstract (Original Language): 
Noktasal süreçleri süren değişkenlerin kestiriminde kullanılan yöntemlerden biri ‘en yüksek olabilirlikli kestirim’ işlemidir. Bu işlemin uygulama alanlarından biri, sinirsel aksiyon potansiyeli dizilerinin içerdiği bilgilerin kestirimidir. Noktasal süreçlerin içerdiği bilgilerin en yüksek olabilirlikle kestirilmesi işleminin evre izgesi henüz incelenmemiş bir konudur. Şimdiki çalışmada, bu evre izgesi, sinirbilimsel açıdan gerçeğe uygun koşullar altında, benzetim yoluyla incelenmiştir. Çalışmanın başlıca bulgusu, en yüksek olabilirlikli kestirim işleminin evre gecikmesinin incelenen frekans aralığında istatistiksel olarak anlamlı olmadığıdır. İkinci bir bulgu ise aynı koşullar altında noktasal süreç özyineli süzgecinin evre gecikmesinin sıfırdan anlamlı derecede büyük olduğudur. Bu sonuçlar, sinir sisteminde gerçekleşen bilgi işlem süreçlerinin zamanlamasının incelendiği çalışmalar için önem taşımaktadır.
FULL TEXT (PDF): 
53-76

REFERENCES

References: 

Barbieri R., Frank L. M., Nguyen D. P., Quirk M. C., Solo V., Wilson M. A., Brown E. N. (2004): “Dynamic Analyses of Information Encoding in Neural Ensembles”, Neural Comput., Cilt 16, s.277-307.
Brown E. N., Barbieri R., Ventura V., Kass R. E., Frank L. M. (2002): “The Time-Rescaling Theorem and its Application to Neural Spike Train Data Analysis”, Neural Comput., Cilt 14, s.325-346.
Brown E. N., Frank L. M., Tang D., Quirk M., Wilson M. A. (1998): “A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells”, J. Neurosci., Cilt 18, s.7411-7425.
Burnham K. P., Anderson D. R. (2002): “Model Selection and Multimodel Inference”, 2. baskı, Springer:New York.
Buzsaki G. (2004): “Large-Scale Recording of Neuronal Ensembles”, Nature Neuroscience, Cilt 7, s.446-451.
Calton J. L., Stackman R. W., Goodridge J. P., Archey W. B., Dudchenko P. A., Taube J. S. (2003): “Hippocampal Place Cell Instability after Lesions of the Head Direction Cell Network”, J. Neurosci., Cilt 23, s.9719-9731.
Czanner G., Eden U. T., Wirth S., Yanike M., Suzuki W. A., Brown E .N. (2008): “Analysis of Between-Trial and Within-Trial Neural Spiking Dynamics”, J Neurophysiol., Cilt 99, s.2672-2693.
Daley D., Jones D. V. (2003): “An Introduction to the Theory of Point Processes”, 2. baskı, Springer-Verlag: New York.
Drake K. L., Wise K. D., Farraye J., Anderson D. J., Bement S. L. (1988): “Performance of Planar Multisite Microprobes in Recording Extracellular Single-Unit Intracortical Activity”, IEEE Transactions on Biomedical Engineering, Cilt 35, s.719-732.
Efron B., Tibshirani R. J. (1993): “An Introduction to the Bootstrap”, Chapman and Hall/CRC: New York.
Golub G. H., Van Loan C. F. (1996): “Matrix Computations”, The Johns Hopkins University Press:Baltimore, Maryland.
Keynes R. D., Aidley D. J. (1991): “Nerve and Muscle”, Cambridge University Press:New Yorks.
Olivares A. M., Forero C. G. (2010): “Goodness of Fit Testing”, (Ed.: P. Peterson, E. Baker, B. Mc Graw), International Encyclopedia of Education, 3. baskı, Oxford: Elsevier, s.190-196.
Sayfa No: 76 M. OKATAN
Mc Cullagh P., Nelder J.A. (1989): “Generalized Linear Models”, 2. baskı, Chapman and Hall: New York.
Muller R. U., Kubie J. L. (1989): “The Firing of Hippocampal Place Cells Predicts the Future Position of Freely Moving Rats”, J. Neurosci., Cilt 9, s.4101-4110.
Muller R. U., Kubie J. L., Ranck J. B. Jr. (1987): “Spatial Firing Patterns of Hippocampal Complex-Spike Cells in a Fixed Environment”, J. Neurosci. Cilt 7, s.1935-1950.
Nijhawan R., Khurana B. (2010): “Space and Time in Perception and Action”, Cambridge University Press:Cambridge.
Ogata Y. (1981): “On Lewis’ Simulation Method for Point Processes”, IEEE Transactions on Information Theory, IT-27, Sayı 1, s.23-31.
Okatan M. (2012): “Noktasal Süreç Özyineli Süzgeçlerinin Evre İzgesi”, 20. IEEE Sinyal İşleme ve İletişim Uygulamaları Kurultayı 2012, DOI: 10.1109/SIU.2012.6204448.
O’Keefe J., Dostrovsky J. (1971): “The Hippocampus as a Spatial Map. Preliminary Evidence from Unit Activity in the Freely-Moving Rat”, Brain Research, Cilt 34, s.171-175.
Oppenheim A. V., Willsky A. S., Young I. T. (1983): “Signals and Systems”, Prentice Hall International Inc.:Londra.
Pawitan Y. (2001): “In All Likelihood: Statistical Modelling and Inference Using Likelihood”, Oxford University Press:New York.
Perkel D. H., Gerstein G. L., Moore G. P. (1967): “Neuronal Spike Trains and Stochastic Point Processes. I. The Single Spike Train”, Biophysical J., Cilt 7, s.391–418.
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. (1992): “Numerical Recipes in C. The Art of Scientific Computing”, 2. baskı, Cambridge University Press.
Schmidt R., Diba K., Leibold C., Schmitz D., Buzsaki G., Kempter R. (2009): “Single-Trial Phase Precession in the Hippocampus”, J. Neurosci., Cilt 29, s.13232-13241.
Truccolo W., Eden U. T., Fellows M. R., Donoghue J. P., Brown E. N. (2005): “A Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic Covariate Effects”, J Neurophysiol., Cilt 93, s.1074-1089.

Thank you for copying data from http://www.arastirmax.com