You are here

KANBAN SAYISI VE İŞLEM ZAMANI DAĞILIMLARININ HÜCRESEL İMALAT ORTAMINDAKİ BİR JIT SİSTEMİNİN PERFORMANSI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

INVESTIGATING THE EFFECTS OF DIFFERENT KANBAN NUMBERS AND PROCESSING TIME DISTRIBUTIONS ON THE PERFORMANCE OF A JIT SYSTEM IN CELLULAR PRODUCTION ENVIRONMENT

Journal Name:

Publication Year:

Abstract (2. Language): 
In the simulation studies related to Just-In-Time (JIT) Production systems, mass production systems have been taken into the consideration mostly. Simulation studies based on the JIT philosophy in the cellular production environment are rather few, and in the existing studies only a part of the production line has been considered rather than the whole. In this study, the behaviours of a JIT production line in cellular production environment with respect to different kanban numbers and processing time distributions are investigated. Operator utilization at the last cell, output, cycle time and work in process buffer are selected as performance measures. System is simulated by using SIMAN simulation language and MINITAB package program is used to analyze the experimental results statistically.
Abstract (Original Language): 
Tam Zamanında Üretim (JIT) sistemleri ile ilgili simülasyon çalışmalarında çoğunlukla seri üretim sistemleri dikkate alınmıştır. Hücresel İmalat ortamında JIT sisteminin işleyişine dayalı simülasyon çalışmaları son derece az olup, var olan çalışmalarda da üretim hattının bütünü yerine sadece belli bir kesimi ele alınmaktadır. Bu çalışmada, hipotetik bir sistem tasarlanarak hücresel imalat ortamında bir JIT üretim hattının değişik kanban sayıları ve farklı işlem zamanı dağılımları altındaki davranışları incelenmiştir. Son hücredeki operatörün kullanım oranı, çıktı miktarı, çevrim zamanı ve aşamalar arasındaki stok miktarı (WIP) performans ölçütleri olarak seçilmiştir. Sistem SIMAN simülasyon dili ile simüle edilmiş, deney sonuçlarının istatistiksel analizinde ise MINITAB paket programı kullanılmıştır.
17-27

REFERENCES

References: 

Banks J., Carson J.S. (1984): “Discrete-Event System Simultion”, Prentice Hall.
Chaturvedi M., Golhar D.Y. (1992): “Simulation Modeling and Analysis of a JIT Production
System”, Production Planning&Control, V.3, N.1, p.81-92.
Ertay T. (1998): “Simulation Approach in Comparison of a Pull System in a Cell Production
System with a Push System in a Conventional Production System according to Flexible
Cost: a Case Study”, International Journal of Production Economics, V.56, p.145-155.
Harhalakis G., Nagi R., Proth J.M. (1990): “An Efficient Heuristic in Manufacturing Cell
Formation for Group Technology Applications”, International Journal of Production
Research, V.28, N.1, p.185-198.
Hines W.W., Montgomery D.C. (1990): “Probability and Statistics in Engineering and
Management Science”, 3rd Edition, John Wiley and Sons.
Min H., Shin D. (1993): “Simultaneous Formation of Machine and Human Cells in Group
Technology: a Multiple Objective Approach”, International Journal of Production
Research, V.31, N.10, p.2307-2318.
Muralidhar K., Swenseth S.R., Wilson R.L. (1992): “Describing Processing Time when
Simulating JIT Environments”, International Journal of Production Research, V.30, N.1,
p.1-11.
Sarker B.R. (1989): “Simulating a JIT Production System”, Computers Ind. Eng, V.16, N.1,
p.127-137.
Sarker B.R., Fitzimmons J.A. (1989): “The Performance of Push and Pull Systems: A
Simulation and Comparative Study”, International Journal of Production Research, V.27,
N.10, p.1715-1731.
Sundaram R.M., Lian W.S. (1990): “An Approach for Designing Cellular Manufacturing
Systems”, Manufacturing Review, V.3, N.2, p.91-97.

Thank you for copying data from http://www.arastirmax.com