You are here

BİYOLOJİK FİLTRE REAKTÖRLER (BFR) İÇİN DOLGU MALZEMESİ ALTERNATİFLERİ

SUPPORT MATERIAL ALTERNATIVES FOR BIOLOGICAL FILTER REACTORS (BFRs)

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Biological Filter Reactors (BFRs) are modified conventional filter systems which were used for wastewater treatment in recent years. One of the most substantial differences among the BFRs, which are currently developed with various trade names, is the nature of support material. In this study, a new support material called as “pellet” which is the waste material of water softening process was investigated as filter media in the BFRs. The major physical characteristics of pellet such as particle size distribution, specific weight, porosity, specific surface area were determined by using standard test methods set by Turkish Institute of Standards (TSE). Fluidisation characteristics such as minimum fluidisation velocity of pellets were also studied in a deep bed filter column. In addition pellet material was used in an up-flow fluidised bed filter reactor and the performance of the reactor in terms of COD removal was evaluated.
Abstract (Original Language): 
Biyolojik Filtre Reaktörler (BFR) klasik filtre sistemlerinin modifiye edilerek atıksu arıtımı amacıyla kullanıldığı yeni teknolojilerdir. Günümüzde farklı isimler altında geliştirilen biyolojik filtreleri birbirinden ayıran özelliklerin başında filtrelerde kullanılan dolgu malzemeleri gelmektedir. Sunulan makalede “pellet” olarak isimlendirilen, su yumuşatma sistemlerinden atık olarak çıkan bir malzemenin BFR’de dolgu malzemesi olarak kullanılabilirliği incelenmiştir. Bu kapsamda, Türk Standartları Enstitüsü’nün (TSE) ilgili şartnamelerinde açıklanan analiz yöntemleri kullanılarak malzemenin tane boyutu dağılımı, özgül ağırlık, birim hacim ağırlık, porozite, özgül yüzey alanı gibi fiziksel özellikleri belirlenmiştir. Laboratuvarda kurulu bir filtre kolonundan yararlanılarak malzemenin akışkanlaşma özellikleri (minimum akışkanlaşma hızı) araştırılmıştır. Ayrıca, yukarı akışlı akışkan yatak olarak işletilen bir reaktöre “pellet” doldurularak malzemenin atıksu arıtımı amacıyla kullanılabilirliği incelenmiş; organik madde giderimi esas alınarak arıtma verimi değerlendirilmiştir.

REFERENCES

References: 

Dee A., James N., Jones I., Strickland J., Upton J., Cooper P. (1994): “Pre-or PostDenitrification at Biological Filter Works? A Case Study”, Water Science and
Technology, Vol. 29, No. 10-11, pp. 145-155.
Dölgen D. (1998): “Treatment of Wastewater by 3F (Fluidised-Fixed and Filter) Reactor”,
Doktora Tezi, Yön. Necdet Alpaslan, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü,
İzmir.
Farrimond M., Upton J. (1993): “A Strategy to Meet the Nutrient (N and P) Standards of the
Urban Wastewater Directive”, Water Science and Technology, Vol. 27, No. 5-6, pp. 297-
306.
Fruhen M., Kühn W., Dohmann M. (1994): “Upgrading of a Wastewater Treatment Plant
Utilizing Existing Trickling Filters and a New Filter Stage”, Water Science and
Technology, Vol. 29, No. 12, pp. 59-67.
Jepsen S.E., La Cour Jansen J. (1993): “Biological Filters for Post-Denitrification”, Water
Science and Technology, Vol. 27, No. 5-6, pp. 369-379.
Kraft A., Seyfried C.F. (1990): “Biologically Intensified Filtration (Dual-Media Dry Bed
Filter) for Advanced Wastewater Treatment”, Water Science and Technology, Vol. 22,
No. 1-2, pp. 317-328.
Lazarova V., Manem J. (1994): “Advances in Biofilm Aerobic Reactors Ensuring Effective
Biofilm Reactors”, Water Science and Technology, Vol. 29, No. 10-11, pp. 319-327.
Meaney B.J., Strickland J.E.T. (1994): “Operating Experiences with Submerged Filters for
Nitrification and Denitrification”, Water Science and Technology, Vol. 29, No. 10-11, pp.
119-125.
Morper M.R. (1994): “Upgrading of Activated Sludge Systems for Nitrogen Removal by
Application of The Linpor®-CN Process”, Water Science and Technology, Vol. 29, No.
12, pp. 167-176.
O’Neill M.J., Horan N.J. (1993): “Design Criteria for Tertiary Nitrifying Biological Filters”,
Chapter 2.2, Attached Growth Process for the Removal of Ammonia and Nitrogen, pp. 67-
72.
Ouyang C.F., Liaw C.M. (1994): “The Optimum Medium of the Suspended Bio-Medium
Aeration Contactor Process”, Water Science and Technology, Vol. 29, No. 10-11, pp. 183-
188.
Pujol R., Hamon M., Kandel X., Lemmel H. (1994): “Biofilters: Flexible, Reliable Biological
Reactors”, Water Science and Technology, Vol. 29, No. 10-11, pp. 33-38.
Quaye B.A. (1987): “Predicting Optimum Backwash Rates and Expansion of Multi-media
Filters”, Water Research, Vol. 21, No. 9, pp. 1077-1087.
Rogalla F., Lomouche A., Specht W., Kleiber B. (1994): “High Rate Aerated Biofilters for
Plant Upgrading”, Water Science and Technology, Vol. 29, No. 12, pp. 207-216.
Sekoulov I., Oles J. (1993): “Multiple Use of Filter Units in Wastewater Treatment”, Proc.
Europ. Wat. Filt. Congress, March, Ooestende, Belgium, pp. 2.109-2.119.
Sekoulov I., Görg S. (1995): “Endüstriyel Atıksu Arıtımında Sabit Yataklı Sistemler”, Su
Kirliliği ve Kontrolu Dergisi, Cilt 5, Sayı 2, s. 9-16.
Türk Standartları (1978): “Agrega Karışımlarının Elek Analizi Deneyi İçin Metod”, TSE,
Ankara.
Türk Standartları (1980a): “Beton Agregalarında Özgül Ağırlık ve Su Emme Oranı Tayini”,
TSE, Ankara.
Türk Standartları (1980b): “Beton Agregalarının Birim Ağırlıklarının Tayini”, TSE, Ankara.
Tsubone T., Osaki Y., Yoshi Y., Takahashi M. (1992): “Effect of Biomass Entrapment and
Carrier Properties on the Performance of an Air-Fluidized-Bed Biofilm Reactor”, Water
Environment Research, Vol. 64, No. 7, pp. 884-889.
Van Der Hoek J.P., Jong R.C., Kappelhof J.W., Hıjnen W.A., Creusen A.J., Bekkers A.J., Feij
L.A. (1993): “Nitrate Removal from Groundwater by Biological Filtration Using the
Fixed Bed/Ethanol Process”, Proc. Europ. Wat. Filt. Congress, March, Ooestende,
Belgium, pp. 2.55-2.

Thank you for copying data from http://www.arastirmax.com