You are here

PARALEL MAKİNALARIN GENETİK ALGORİTMA İLE ÇİZELGELENMESİNDE MUTASYON ORANININ ETKİNLİĞİ

EFFICIENCY OF MUTATION RATE FOR PARALLEL MACHINE SCHEDULING WITH GENETIC ALGORITHM

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Genetic algorithms (GA) have been extensively used in parallel machine scheduling as a type of heuristic method. Depends on rate of operators, GA represents affirmative or negative performance. One of these operators is mutation rate. In this study, we addressed efficiency of mutation rate on GA for parallel machine scheduling.
Abstract (Original Language): 
Genetik algoritma (GA), karmaşık olarak bilinen paralel makinaların çizelgelenmesi problemlerinin çözümlenmesinde kullanılan sezgisel bir yöntemdir. GA, sahip olduğu operatörlerin gerçekleşme oranlarına bağlı olarak olumlu veya olumsuz performans göstermektedir. Bu operatörden bir tanesi de mutasyon oranıdır. Bu çalışmada paralel makinaların çizelgelenmesinde mutasyon oranının genetik algoritma performansı üzerine etkisi araştırılmıştır.
199-210

REFERENCES

References: 

Borovska P. 2006. „Solving the Travelling Salesman Problem in Parallel by Genetic Algorithm on Multicomputer Cluster‟. International Conference on Computer Systems and Technologies - CompSysTech‟06, 15-16 June 2006, University of Veliko Tarnovo, Bulgaria
Gen, M. ve Cheng, R. (1997): Genetic Algorithms and Engineering Design, Wiley-IEEE.
Goldberg D.E. (1989), Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, USA.
Hamilton, W.D. ve Ridley, M. (2005): Narrow roads of gene land: the collected papers of W.D. Hamilton, Oxford University Press.
Kocamaz, M., Çiçekli, U.G. ve Soyuer, H. (2009): “A Developed Encoding Method for Parallel Machine Scheduling with Permutation Genetic Algorithm”, European and Mediterranean Conference on Information Systems EMCIS 2009, Crowne Plaza Hotel, Izmir, Brunel University and Dokuz Eylül University, 13 – 14 July 2009.
Mitchell, M. (1998): An Introduction to Genetic Algorithms, MIT Press.
MORI M. ve TSENG C.C. (1997): “Theory and Methodology: A genetic algorithm for multi-mode resource constrained project scheduling problem”, European Journal of Operational Research, 100: 134-141
Pinedo, M. (2008): Scheduling: Theory, Algorithms, and Systems, Edition: 3, Springer.
Ruiz, R. Ve Maroto, C. (2006): “A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility”, European Journal of Operational Research, 169: 781–800
Sagegheih, A. (2006): “Scheduling problem using genetic algorithm, simulated annealing and the effects of parameter values on GA performance”, Applied Mathematical Modelling, 30: 147-154.
Sheikh, K. (2003): Manufacturing Resource Planning (MRP II) With an Introduction to ERP, SCM, and CRM, McGraw-Hill.
WANG Y.Z. (2003): “Using genetic algorithm methods to solve course scheduling problems” Expert Systems with Applications, 25: 39-50
YEO M. F. and Agyei E. O. (1998): “Optimising engineering problems using genetic algorithms”, Engineering Computations, 15(2): 268-280.
Zhenbo W. and Wenxun X. 2006. „Parallel Machine Scheduling with Special İşs‟, Tsınghua Science and Technology, 11(1): 107-

Thank you for copying data from http://www.arastirmax.com